Targeting MicroRNA-192-5p, a Downstream Effector of NOXs (NADPH Oxidases), Reverses Endothelial DHFR (Dihydrofolate Reductase) Deficiency to Attenuate Abdominal Aortic Aneurysm Formation

Author:

Huang Kai12,Narumi Taro12ORCID,Zhang Yixuan12,Li Qiang12,Murugesan Priya12,Wu Yusi12,Liu Norika Mengchia12,Cai Hua12ORCID

Affiliation:

1. Division of Molecular Medicine, Department of Anesthesiology (K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.

2. Division of Cardiology, Department of Medicine ((K.H., T.N., Y.Z., Q.L., P.M., Y.W., N.M.L., H.C.), David Geffen School of Medicine, University of California Los Angeles.

Abstract

We have shown that endothelial-specific DHFR (dihydrofolate reductase) deficiency underlies eNOS (endothelial NO synthase) uncoupling and formation of abdominal aortic aneurysm (AAA). Here, we examined a novel role of microRNA-192-5p in mediating NOX (NADPH oxidase)-dependent DHFR deficiency and AAA formation. microRNA-192-5p is predicted to target DHFR. Intriguingly, homo sapiens–microRNA-192-5p expression was substantially upregulated in human patients with AAA. In human aortic endothelial cells exposed to hydrogen peroxide (H 2 O 2 ), homo sapiens–microRNA-192-5p expression was significantly upregulated. This was accompanied by a marked downregulation in DHFR mRNA and protein expression, which was restored by homo sapiens–microRNA-192-5p–specific inhibitor. Of note, microRNA-192-5p expression was markedly upregulated in Ang II (angiotensin II)–infused hph-1 (hyperphenylalaninemia 1) mice, which was attenuated in hph-1–NOX1, hph-1–NOX2, hph-1–neutrophil cytosol factor 1, and hph-1–NOX4 double mutant mice where AAA incidence was also abrogated, indicating a downstream effector role of microRNA-192-5p following NOX activation. In vivo treatment with mus musculus–microRNA-192-5p inhibitor attenuated expansion of abdominal aortas in Ang II–infused hph-1 mice as defined by ultrasound and postmortem inspection. It also reversed features of vascular remodeling including matrix degradation, adventitial hypertrophy, and formation of intraluminal thrombi. These animals had restored DHFR mRNA and protein expression, attenuated superoxide production, recoupled eNOS, and preserved NO bioavailability. In conclusion, our data for the first time demonstrate a critical role of microRNA-192-5p in mediating NOX-dependent DHFR deficiency and AAA formation, inhibition of which is robustly effective in attenuating development of AAA. Since the mouse and human microRNA-192-5p sequences are identical, the microRNA-192-5p inhibitors may be readily translatable into novel therapeutics for the treatment of AAA.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3