Cervical Ganglion Block Attenuates the Progression of Pulmonary Hypertension via Nitric Oxide and Arginase Pathways

Author:

Na Sungwon1,Kim Ok Soo1,Ryoo Sungwoo1,Kweon Tae Dong1,Choi Yong Seon1,Shim Hyo Sup1,Oh Young Jun1

Affiliation:

1. From the Department of Anesthesiology and Pain Medicine (S.N., T.D.K., Y.S.C., Y.J.O.), Anesthesia and Pain Research Institute (S.N., T.D.K., Y.S.C., Y.J.O.), Severance Biomedical Science Institute (O.S.K.), and Department of Pathology (H.S.S.), Yonsei University College of Medicine, Seoul, Republic of Korea; and Department of Biology, College of Natural Sciences, Kangwon National University, Chuncheon, Republic of Korea (S.R.).

Abstract

It has been recognized that the sympathetic nervous system is activated in pulmonary arterial hypertension (PAH), and abnormal sympathetic hyperactivity leads to worsening of PAH via endothelial dysfunction. The purpose of this study was to examine whether sympathetic ganglion block (SGB) can treat PAH by increasing the availability of nitric oxide (NO). PAH was induced in rats by 50 mg/kg of subcutaneous monocrotaline. After 2 weeks, daily injections of ropivacaine into the left superior cervical ganglion were repeated for 14 days (monocrotaline-SGB group). Monocrotaline group received sham SGB with saline, whereas control group received saline instead of monocrotaline. PAH was evident in monocrotaline group, with right ventricular systolic pressures (47±4 mm Hg) that were higher than those of controls (17±2 mm Hg), whereas SGB significantly attenuated monocrotaline-induced PAH (35±4 mm Hg). The right/left ventricular mass ratios exhibited similar changes to those seen with right ventricular pressures. Heart rate variability showed significantly higher sympathetic activity in the monocrotaline group. Microscopy revealed a higher proportion of muscular arteries with thicker medial walls in the monocrotaline group, which was attenuated by SGB. Monocrotaline induced arginase hyperactivity, which was in turn decreased by SGB-induced endothelial NO synthase activation. SGB restored monocrotaline-induced hypoactivity of superoxide dismutase. In conclusion, SGB could suppress PAH and the remodeling of pulmonary arteries via inactivation of arginase and reciprocal elevation of NO bioavailability, thus attenuating disproportionate hyperactivation of the sympathetic nervous system.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3