Chronic 3D Vascular-Immune Interface Established by Coculturing Pressurized Resistance Arteries and Immune Cells

Author:

Carnevale Daniela12ORCID,Carnevale Lorenzo2,Perrotta Sara1ORCID,Pallante Fabio2,Migliaccio Agnese2,Iodice Daniele2,Perrotta Marialuisa1,Lembo Giuseppe12ORCID

Affiliation:

1. Department of Molecular Medicine, “Sapienza University” of Rome, Italy (D.C., S.P., M.P., G.L.).

2. Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli (IS), Italy (D.C., L.C., F.P., A.M., D.I., G.L.).

Abstract

Chronic exposure of the arterial vasculature to high blood pressure recruits immune cells and contributes to the vascular remodeling, dysfunction, and inflammation observed in hypertension. The mechanisms underlying the interaction between vascular and immune cells remain unknown, hampering the development of effective therapies targeting the vascular-immune interface. Overcoming these limitations requires a reliable, physiologically relevant experimental model of vascular-immune interface. By coculturing a 3-dimensional organ culture vascular system with immune cells of interest, we reproduced ex vivo the vascular-immune interface that occurs in hypertension. In the 3-dimensional vascular-immune interface model, CD8 but not CD4 T cells isolated from hypertensive mice increased the contractile properties of resistance arteries in naive mice, indicating that CD8 lymphocytes directly contribute to enhanced peripheral resistance in hypertension. RNA sequencing of CD8 lymphocytes isolated from prehypertensive mice revealed upregulation of gene pathways involved in chemotaxis, response to IFN-γ and other external stimuli, MAPK cascade activation, and positive regulation of intracellular calcium fluxes, as compared with CD4 T cells. Taken together, these results indicate that hypertensive stimuli program CD8 T cells toward a phenotype with promigratory properties that might account for their ability to enhance myogenic tone of resistance arteries when cocultured in the 3-dimensional system. Here, we demonstrate modeling a 3-dimensional organ culture vascular system that recapitulates the in vivo physiological properties of resistance arteries. This platform holds on a substantial translational potential, not only for hypertension but also for other cardiovascular diseases where vascular-immune interfaces are established and relevant for onset and progression of the disease.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3