Angiotensin AT 2 Receptor Stimulation Inhibits Early Renal Inflammation in Renovascular Hypertension

Author:

Matavelli Luis C.1,Huang Jiqian1,Siragy Helmy M.1

Affiliation:

1. From the Department of Medicine, University of Virginia Health System, Charlottesville, VA.

Abstract

Angiotensin II type 2 receptor (AT 2 R) counteracts most effects of angiotensin II type 1 receptor (AT 1 R). We hypothesized that direct AT 2 R stimulation reduces renal production of the inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and transforming growth factor-β1 (TGF-β1) and enhances the production of nitric oxide (NO) and cyclic guanosine 3′,5′-monophosphate (cGMP) in the clipped kidney of 2-kidney, 1-clip (2K1C) hypertension rat model. We used Sprague-Dawley rats to evaluate changes in renal interstitial fluid recovery levels of TNF-α, IL-6, NO, and cGMP; renal expression of AT 1 R, AT 2 R, TGF-β1, TNF-α, and IL-6 in sham and 2K1C rats treated for 4 days with vehicle, AT 2 R agonist compound 21 (C21), or AT 2 R antagonist PD123319 (PD), alone and combined (n=6, each group). Systolic blood pressure increased significantly in 2K1C and was not influenced by any treatment. Clipped kidneys showed significant increases in renal expression of AT 1 R, AT 2 R, TNF-α, IL-6, TGF-β1 and decreases in NO and cGMP levels. These factors were not influenced by PD treatment. In contrast, C21 caused significant decrease in renal TNF-α, IL-6, TGF-β1 and an increase in NO and cGMP levels. Combined C21 and PD treatment partially reversed the observed C21 effects. Compared to sham, there were no significant changes in TNF-α, IL-6, TGF-β1, NO, or cGMP in the nonclipped kidneys of 2K1C animals. We conclude that direct AT 2 R stimulation reduces early renal inflammatory responses and improves production of NO and cGMP in renovascular hypertension independent of blood pressure reduction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 137 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3