Caspase-4/11–Mediated Pulmonary Artery Endothelial Cell Pyroptosis Contributes to Pulmonary Arterial Hypertension

Author:

Wu Yusi12,Pan Bingjie3ORCID,Zhang Zhen2,Li Xiaohui1,Leng Yiping24,Ji Yong5ORCID,Sun Kun6,Chen Alex F.26ORCID

Affiliation:

1. Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China (Y.W., X.L.).

2. Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China (Y.W., Z.Z., Y.L., A.F.C.).

3. Liuzhou Maternal and Child Healthcare Hospital, Liuzhou, Guangxi, China (B.P.).

4. The Affiliated Changsha Central Hospital, Research Center for Phase I Clinical Trials, Hengyang Medical School, University of South China, Changsha, Hunan, China (Y.L.).

5. Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, China (Y.J.).

6. Institute for Cardiovascular Development and Regenerative Medicine, Xinhua Hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China (K.S., A.F.C.).

Abstract

Background: Endothelial dysfunction enhances vascular inflammation, which initiates pulmonary arterial hypertension (PAH) pathogenesis, further induces vascular remodeling and right ventricular failure. Activation of inflammatory caspases is an important initial event at the onset of pyroptosis. Studies have shown that caspase-1–mediated pyroptosis has played a crucial role in the pathogenesis of PAH. However, the role of caspase-11, another inflammatory caspase, remains to be elucidated. Therefore, the purpose of this study was to clarify the role of caspase-11 in the development of PAH and its mechanism on endothelial cell function. Methods: The role of caspase-11 in the progression of PAH and vascular remodeling was assessed in vivo. In vitro, the effect of caspase-4 silencing on the human pulmonary arterial endothelial cells pyroptosis was determined. Results: We confirmed that caspase-11 and its human homolog caspase-4 were activated in PAH animal models and TNF (tumor necrosis factor)-α–induced human pulmonary arterial endothelial cells. Caspase-11 −/− relieved right ventricular systolic pressure, right ventricle hypertrophy, and vascular remodeling in Sugen-5416 combined with chronic hypoxia mice model. Meanwhile, pharmacological inhibition of caspase-11 with wedelolactone exhibited alleviated development of PAH on the monocrotaline-induced rat model. Moreover, knockdown of caspase-4 repressed the onset of TNF-α–induced pyroptosis in human pulmonary arterial endothelial cells and inhibited the activation of pyroptosis effector GSDMD (gasdermin D) and GSDME (gasdermin E). Conclusions: These observations identified the critical role of caspase-4/11 in the pyroptosis pathway to modulate pulmonary vascular dysfunction and accelerate the progression of PAH. Our findings provide a potential diagnostic and therapeutic target in PAH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3