S1P (Sphingosine-1-Phosphate)–Induced Vasodilation in Human Resistance Arterioles During Health and Disease

Author:

Katunaric Boran1,SenthilKumar Gopika123ORCID,Schulz Mary E.12,De Oliveira Nilto4,Freed Julie K.123ORCID

Affiliation:

1. Department of Anesthesiology (B.K., G.S., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee.

2. Cardiovascular Center (B.K., G.S., M.E.S., J.K.F.), Medical College of Wisconsin, Milwaukee.

3. Department of Physiology (G.S., J.K.F.), Medical College of Wisconsin, Milwaukee.

4. Department of Surgery, Division of Adult Cardiothoracic Surgery (N.D.O.), Medical College of Wisconsin, Milwaukee.

Abstract

Background: Preclinical studies suggest that S1P (sphingosine-1-phosphate) influences blood pressure regulation primarily through NO-induced vasodilation. Because microvascular tone significantly contributes to mean arterial pressure, the mechanism of S1P on human resistance arterioles was investigated. We hypothesized that S1P induces NO-mediated vasodilation in human arterioles from adults without coronary artery disease (non–coronary artery disease) through activation of 2 receptors, S1PR 1 (S1P receptor 1) and S1PR 3 (S1P receptor 3). Furthermore, we tested whether this mechanism is altered in vessels from patients diagnosed with coronary artery disease. methods: Human arterioles (50–200 µm in luminal diameter) were dissected from otherwise discarded surgical adipose tissue, cannulated, and pressurized. Following equilibration, resistance vessels were preconstricted with ET-1 (endothelin-1) and changes in internal diameter to increasing concentrations of S1P (10-12 to 10-7 M) in the presence or absence of various inhibitors were measured. Results: S1P resulted in significant dilation that was abolished in vessels treated with S1PR 1 and S1PR 3 inhibitors and in vessels with reduced expression of each receptor. Dilation to S1P was significantly reduced in the presence of the NOS (NO synthase) inhibitor Nω-nitro-L-arginine methyl ester and the NO scavenger 2-4-(carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. Interestingly, dilation was also significantly impaired in the presence of PEG-catalase (polyethylene glycol–catalase), apocynin, and specific inhibitors of NOX (NADPH oxidases) 2 and 4. Dilation in vessels from patients diagnosed with coronary artery disease was dependent on H 2 O 2 alone which was only dependent on S1PR 3 activation. Conclusions: These translational studies highlight the inter-species variation observed in vascular signaling and provide insight into the mechanism by which S1P regulates microvascular resistance and ultimately blood pressure in humans.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3