Detrimental Role of PDZ-RhoGEF in Pathological Cardiac Hypertrophy

Author:

Huang Jia1,Qu Qingrong2,Dai Yuxiang1,Ren Daoyuan1,Qian Juying1ORCID,Ge Junbo1ORCID

Affiliation:

1. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China and National Clinical Research Center for Interventional Medicine (J.H., Y.D., D.R., J.Q., J.G.).

2. Department of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China and Shanghai Clinical Research Center for Tuberculosis, Shanghai, China (Q.Q.).

Abstract

Background: Postsynaptic density 95/disk-large/ZO-1 Rho guanine nucleotide exchange factor (PDZ-RhoGEF, PRG) functions as a RhoGEF for activated Gα13 and transmits activation signals to downstream signaling pathways in various pathological processes. Although the prohypertrophic effect of activated Gα13 (guanine nucleotide binding protein alpha 13; a heterotrimeric G protein) is well-established, the role of PDZ-RhoGEF in pathological cardiac hypertrophy is still obscure. Methods: Genetically engineered mice and neonatal rat ventricular myocytes were generated to investigate the function of PRG in pathological myocardial hypertrophy. The prohypertrophic stimuli-induced alternations in the morphology and intracellular signaling were measured in myocardium and neonatal rat ventricular myocytes. Furthermore, multiple molecular methodologies were used to identify the precise molecular mechanisms underlying PDZ-RhoGEF function. Results: Increased PDZ-RhoGEF expression was documented in both hypertrophied hearts and neonatal rat ventricular myocytes. Upon prohypertrophic stimuli, the PDZ-RhoGEF-deficient hearts displayed alleviated cardiomyocyte enlargement and attenuated collagen deposition with improved cardiac function, whereas the adverse hypertrophic responses in hearts and neonatal rat ventricular myocytes were markedly exaggerated by PDZ-RhoGEF overexpression. Mechanistically, RhoA (ras homolog family member A)-dependent signaling pathways may function as the downstream effectors of PDZ-RhoGEF in hypertrophic remodeling, as confirmed by rescue experiments using a RhoA inhibitor and dominant-negative RhoA. Furthermore, PDZ-RhoGEF is associated with activated Gα13 and contributes to Gα13-mediated activation of RhoA-dependent signaling. Conclusions: Our data provide the first evidence that PDZ-RhoGEF promotes pathological cardiac hypertrophy by linking activated Gα13 to RhoA-dependent signaling pathways. Therefore, PDZ-RhoGEF has the potential to be a diagnostic marker or therapeutic target for pathological cardiac hypertrophy.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3