Sodium, Interstitium, Lymphatics and Hypertension—A Tale of Hydraulics

Author:

Rossitto Giacomo12ORCID,Bertoldi Giovanni2ORCID,Rutkowski Joseph M.3,Mitchell Brett M.3ORCID,Delles Christian1ORCID

Affiliation:

1. School of Cardiovascular and Metabolic Health, University of Glasgow, United Kingdom (G.R., C.D.).

2. Emergency Medicine and Hypertension, Department of Medicine (DIMED), Università degli Studi di Padova, Italy (G.R., G.B.).

3. Department of Medical Physiology, Texas A&M University School of Medicine (J.M.R., B.M.M.).

Abstract

Blood pressure is regulated by vascular resistance and intravascular volume. However, exchanges of electrolytes and water between intra and extracellular spaces and filtration of fluid and solutes in the capillary beds blur the separation between intravascular, interstitial and intracellular compartments. Contemporary paradigms of microvascular exchange posit filtration of fluids and solutes along the whole capillary bed and a prominent role of lymphatic vessels, rather than its venous end, for their reabsorption. In the last decade, these concepts have stimulated greater interest in and better understanding of the lymphatic system as one of the master regulators of interstitial volume homeostasis. Here, we describe the anatomy and function of the lymphatic system and focus on its plasticity in relation to the accumulation of interstitial sodium in hypertension. The pathophysiological relevance of the lymphatic system is exemplified in the kidneys, which are crucially involved in the control of blood pressure, but also hypertension-mediated cardiac damage. Preclinical modulation of the lymphatic reserve for tissue drainage has demonstrated promise, but has also generated conflicting results. A better understanding of the hydraulic element of hypertension and the role of lymphatics in maintaining fluid balance can open new approaches to prevent and treat hypertension and its consequences, such as heart failure.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alterations of Placental Sodium in Preeclampsia: Trophoblast Responses;Hypertension;2024-09

2. Lymphatic System in Cardiovascular Disease;Advanced Targeting of the Lymphatic System;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3