Localization of 2 11β-OH Steroid Dehydrogenase Isoforms in Aortic Endothelial Cells

Author:

Brem Andrew S.1,Bina Robert B.1,King Thomas C.1,Morris David J.1

Affiliation:

1. From the Brown University School of Medicine; Rhode Island and Miriam Hospitals; Departments of Pediatrics (Nephrology) and Laboratory Medicine, Providence RI.

Abstract

11β-hydroxysteroid dehydrogenase (11β-HSD) is expressed in vascular smooth muscle cells (VSMC) but has not been reported to be present in vascular endothelial cells. This enzyme assists in regulating the cellular concentration of active endogenous glucocorticoids (GCs). We have observed that endothelium intact rat aortic rings express message for both Type 1 and Type 2 11β-HSD whereas primary cultures of VSMC express only mRNA for the Type I isoform. Since GCs diminish prostacyclin synthesis in endothelial cells, we hypothesized that 11β-HSD is present in vascular endothelial cells. In primary cultures of rat aortic endothelial (RAE) cells, mRNA from both isoforms of 11β-HSD could be detected by RT-PCR with higher levels of the Type 1 isoform. The oxo-reductase reaction “activating” 11-dehydro metabolites back to the parent steroid is the preferred enzyme direction (12:1 after a 120 minutes steroid incubation) in intact RAE cells. When RAE cells are grown in the presence of antisense oligonucleotides specific for Type 1 11β-HSD, oxo-reductase activity is decreased by approximately 50% but the dehydrogenase reaction, which inactivates endogenous GCs and is characteristic of the Type 2 isoform, is unaffected. Thus endothelial cells appear to express both isoforms of 11β-HSD; the Type 1 isoform dominates functioning in the oxo-reductase mode. Inhibition of the oxo-reductase reaction may lower the local concentrations of GC and indirectly allow for increased production of prostacyclin in endothelial cells.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3