Appropriate Regulation of Renin and Blood Pressure in 45-kb Human Renin/Human Angiotensinogen Transgenic Mice

Author:

Catanzaro Daniel F.1,Chen Rong1,Yan Yan1,Hu Lufei1,Sealey Jean E.1,Laragh John H.1

Affiliation:

1. From the Cardiovascular Center, Weill Medical College, Cornell University, New York, NY.

Abstract

Abstract —The renin-angiotensin system is normally subject to servo control mechanisms that suppress plasma renin levels in response to increased blood pressure and increase plasma renin levels when blood pressure falls. In most species, renin is rate limiting, and angiotensinogen circulates at a concentration close to the K m , so varying the concentration of either can affect the rate of angiotensin formation. However, only the plasma renin level responds to changes in blood pressure and sodium balance to maintain blood pressure homeostasis. Therefore, the high plasma human renin levels and the hypertension of mice and rats containing both human renin and angiotensinogen transgenes indicate inappropriate regulation of renin and blood pressure. These anomalies led us to develop new lines of transgenic mice with a longer human renin gene fragment (45 kb) than earlier lines (13 to 15 kb). Unlike their predecessors, the 45-kb hREN mice secrete human renin only from the kidneys, and both the human and mouse renins respond appropriately to physiological stimuli. To determine whether blood pressure is also regulated appropriately, we crossed these new 45-kb hREN mice with mice containing the human angiotensinogen gene. All doubly transgenic mice were normotensive like their singly transgenic and nontransgenic littermates. Moreover, among doubly transgenic mice, both human and mouse plasma renin concentrations were suppressed relative to the singly transgenic 45-kb hREN mice. These findings demonstrate the importance of appropriate cell and tissue specificity of gene expression in constructing transgenic models and affirm the pivotal role played by renal renin secretion in blood pressure control.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3