Affiliation:
1. From the Division of Hypertension and Vascular Medicine, CHUV, Lausanne, Switzerland.
Abstract
Abstract
—Nitric oxide (NO) has been demonstrated to play a central role in vascular biology and pathobiology. The expression of endothelial NO synthase (eNOS) is regulated in part by blood flow–induced mechanical factors. The purpose of this study was to evaluate how the expression of eNOS mRNA correlates with the activation of its promoter in both arterial and venous endothelial cells (ECs) exposed to mechanical forces, ie, shear stress and cyclic circumferential stretch. Bovine aortic ECs (BAECs) and EA hy.926, a cell line derived from human umbilical vein ECs, were grown on the inside of elastic tubes and subjected to combinations of pressure, pulsatile shear stress, and cyclic circumferential stretch for 24 hours. Two patterns of shear stress were used: unidirectional (mean of 6, ranging from 3 to 9 dyne/cm
2
) and oscillatory (mean of 0.3, ranging from −3 to +3 dyne/cm
2
). The expression of eNOS mRNA was quantified by Northern blot analysis. Activation of the promoter was assessed by luciferase activity after the cells were transiently transfected before the flow experiments with a plasmid construct containing the fully functional eNOS promoter coupled to a luciferase reporter gene. Expression of eNOS mRNA was increased and promoter activity was enhanced by unidirectional shear stress compared with static control. Oscillatory shear slightly upregulated eNOS mRNA in BAECs, whereas it downregulated eNOS mRNA in EA hy.926. In both BAECs and EA hy.926, there was a good correlation between the increase in eNOS mRNA expression and promoter activation by unidirectional shear stress. In contrast, in both BAECs and EA hy.926 cells exposed to shear stress, cyclic stretch did not change eNOS mRNA expression, but the activation of eNOS promoter was significantly lower. Moreover, when ECs were exposed to oscillatory shear stress, there was a dramatic activation of the eNOS promoter. These results demonstrate that unidirectional shear stress increases eNOS mRNA expression via a transcriptional mechanism. However, oscillatory shear stress and cyclic stretch appear to control eNOS expression through posttranscriptional regulatory events.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
207 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献