Excitatory Amino Acids in the Rostral Ventrolateral Medulla Support Blood Pressure in Spontaneously Hypertensive Rats

Author:

Ito Satoru1,Komatsu Kazutoshi1,Tsukamoto Kazuyoshi1,Sved Alan F.1

Affiliation:

1. From the Second Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan (S.I., K.K., K.T.), and Department of Neuroscience, University of Pittsburgh (Pa) (S.I., A.F.S.).

Abstract

Abstract —Injection of the excitatory amino acid (EAA) antagonist kynurenic acid (KYN) into the rostral ventrolateral medulla (RVLM) of anesthetized rats has no effect on arterial pressure. However, we recently reported that after inhibition of the caudal ventrolateral medulla, injection of KYN into the RVLM decreased arterial pressure to the same level as produced by complete inhibition of the RVLM. We have suggested that these results reflect tonically active EAA-mediated inputs to the RVLM producing both direct excitation of RVLM vasomotor neurons and indirect inhibition of these neurons. On the basis of this model, we hypothesize that the balance between these EAA-driven direct excitatory and indirect inhibitory influences on the RVLM may be altered in models of experimental hypertension. To begin to test this hypothesis, the effects of injecting KYN into the RVLM of spontaneously hypertensive rats (SHR) and Wistar-Kyoto rats (WKY) were compared. In chloralose-anesthetized WKY, bilateral injection of KYN into the RVLM did not alter arterial pressure, whereas similar injections in SHR reduced mean arterial pressure by ≈40 mm Hg. After inhibition of the caudal ventrolateral medulla, which similarly increased arterial pressure in both strains, injection of KYN into the RVLM reduced mean arterial pressure to the same level as produced by autonomic blockade. These results suggest that the balance of excitatory and inhibitory influences on RVLM vasomotor neurons driven by tonically active EAA-mediated inputs to the RVLM is disrupted in SHR and may contribute to the hypertension in SHR.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Reference15 articles.

1. The subretrofacial vasomotor nucleus: Anatomical, chemical and pharmacological properties and role in cardiovascular regulation

2. Sved AF. Cardiovascular system. In: Zigmond MJ Bloom FE Landis SC Roberts JL Squire LR eds. Fundamental Neuroscience . San Diego Calif: Academic Press; 1999:1051–1062.

3. Role of rostral ventrolateral medulla in centrally mediated pressor responses

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3