Sympathetic Control of Arterial Membrane Potential by ATP-Sensitive K + -Channels

Author:

Goto Kenichi1,Fujii Koji1,Abe Isao1,Fujishima Masatoshi1

Affiliation:

1. From the Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.

Abstract

Abstract —Stimulation of perivascular nerve terminals leads to a release of various neurotransmitters such as norepinephrine, epinephrine, acetylcholine, nitric oxide, and calcitonin gene-related peptide (CGRP). Because some of these substances have been shown to cause smooth muscle hyperpolarization by direct or endothelium-dependent mechanisms, we hypothesized that the liberation of 1 or more of these transmitters may lead to neurogenic hyperpolarization in arterial muscle cells. The present study was designed to determine the presence or absence of neurogenic hyperpolarization and, if present, its underlying mechanisms in isolated rat mesenteric resistance arteries, through the use of conventional microelectrode techniques. The experiments were performed under the combined blockade of α-adrenoceptors and purinoceptors with phentolamine and suramin to eliminate depolarizing responses to nerve stimulation. Under these conditions, perivascular nerve stimulation (5 Hz, 30 seconds) evoked smooth muscle hyperpolarization (−3.3±0.3 mV, n=15), which was abolished by tetrodotoxin, indicating the neurogenic origin of the response. This neurogenic hyperpolarization was resistant to atropine, nitro- l -arginine, or CGRP8-37, a CGRP antagonist, but was abolished by guanethidine and β-blocker propranolol. This hyperpolarization was also abolished by glibenclamide, an ATP-sensitive K + channel (K ATP ) blocker, but was unaffected by apamin, a Ca 2+ -activated K + channel blocker. In separate experiments, exogenous norepinephrine caused glibenclamide-sensitive hyperpolarization in the presence of phentolamine. On the other hand, norepinephrine-induced depolarization in the absence of phentolamine was enhanced by propranolol. These findings suggest that neurally released catecholamines cause membrane hyperpolarization through the activation of K ATP by β-adrenoceptors. Such hyperpolarization may play an important role in the control of arterial membrane potential by opposing α-adrenergic depolarization.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3