Elevated Fos Expression in the Nucleus Tractus Solitarii Is Associated With Reduced Baroreflex Response in Spontaneously Hypertensive Rats

Author:

Chan Julie Y. H.1,Chen Wan-Chi1,Lee Hsien-Yang1,Chan Samuel H. H.1

Affiliation:

1. From the Department of Education and Medical Research, Veterans General Hospital–Taipei (J.Y.H.C., W-C.C., H-Y.L.), and Center for Neuroscience, National Yang-Ming University (S.H.H.C.), Taipei, Taiwan, Republic of China.

Abstract

Abstract —We delineated the functional role of Fos protein at the nucleus tractus solitarii in the manifestation of reduced baroreceptor reflex control of heart rate during hypertension, using spontaneously hypertensive rats (SHR), stroke-prone SHR, Wistar-Kyoto rats, or Sprague-Dawley rats. Microinjection into the bilateral nucleus tractus solitarii of an antisense oligonucleotide that targets against the initiation codon of c- fos mRNA significantly potentiated the baroreceptor reflex in response to 30 minutes of sustained increase in blood pressure. Of particular note was the restoration of both the impaired sensitivity and capacity of baroreceptor reflex in SHR and stroke-prone SHR to levels comparable to those in normotensive rats. Likewise, the number of Fos-immunoreactive nuclei evoked by the sustained increase in blood pressure in the caudal nucleus tractus solitarii of SHR and stroke-prone SHR was reduced, after this antisense c- fos treatment, to the basal level exhibited by the normotensive animals. Control treatment with the corresponding sense oligonucleotide, an antisense oligonucleotide that targets against a different portion of the coding sequence of the c- fos mRNA or artificial cerebrospinal fluid, on the other hand, elicited no discernible effect on either the baroreceptor reflex response or the induced expression of Fos protein in the nucleus tractus solitarii by baroreceptor activation. We also found that the basal level of Fos expression in the caudal nucleus tractus solitarii was significantly elevated in the SHR and stroke-prone SHR. Together, these novel findings suggest that an elevated expression of basal Fos protein in the NTS during hypertension may be associated with the dysfunction in baroreceptor reflex control of heart rate.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3