Adrenomedullin Gene Delivery Attenuates Hypertension, Cardiac Remodeling, and Renal Injury in Deoxycorticosterone Acetate-Salt Hypertensive Rats

Author:

Dobrzynski Eric1,Wang Cindy1,Chao Julie1,Chao Lee1

Affiliation:

1. From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston.

Abstract

Abstract —Adrenomedullin (AM) is a potent vasodilator and natriuretic peptide that plays an important role in cardiorenal function. In this study, we explored the potential protective role of AM in volume-dependent hypertension by somatic gene delivery. Adenovirus containing the human AM cDNA under the control of the cytomegalovirus promoter/enhancer was administered into deoxycorticosterone acetate (DOCA)-salt hypertensive rats via tail vein injection. A single injection of the human AM gene resulted in a prolonged reduction of blood pressure with a maximal reduction of 41 mm Hg 9 days after gene delivery. Human AM gene delivery enhanced renal function, as indicated by a 3-fold increase in renal blood flow and a 2-fold increase in glomerular filtration rate (n=5, P <0.05). Histological examination of the kidney revealed a significant reduction in glomerular sclerosis, tubular injury, luminol protein cast accumulation, and interstitial fibrosis as well as urinary protein. Human AM gene delivery caused significant decreases in left ventricular weight and cardiomyocyte diameter, which were accompanied by reduced interstitial fibrosis and extracellular matrix formation within the heart. Expression of human AM mRNA was detected in the kidney, adrenal gland, heart, aorta, lung, and liver; immunoreactive human AM levels were measured in urine and plasma. Significant increases in urinary and cardiac cAMP levels were observed in DOCA-salt rats receiving the human AM gene, indicating activation of the AM receptor. These findings showed that AM gene delivery attenuates hypertension, protects against cardiac remodeling and renal damage in volume-overload hypertension, and may have significance in therapeutic applications in cardiovascular and renal diseases.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3