Nitric Oxide Opposes Myogenic Pressure Responses Predominantly in Large Arterioles In Vivo

Author:

de Wit Cor1,Jahrbeck Bernhard1,Schäfer Christian1,Bolz Steffen-Sebastian1,Pohl Ulrich1

Affiliation:

1. From the Institute of Physiology and Pathophysiology, Johannes-Gutenberg-Universität, Mainz, Germany.

Abstract

Abstract —A myogenic vasoconstriction may amplify the effects of circulating vasoconstrictors. In cremaster arterioles, the contribution of a myogenic component to the constriction on intravenous infusion of norepinephrine (NE) or angiotensin II (Ang II) was studied. Second, the role of endothelium-derived nitric oxide (NO) in the control of these myogenic constrictions and its site of action in the resistance vascular bed was investigated. In 30 anesthetized (pentobarbital) hamsters, the cremaster was prepared for intravital microscopy, and a pneumatic vessel occluder was placed around the aorta to vary blood pressure in the hindquarter of the animal. Intravenous infusion of NE (0.5 nmol/min) increased the systemic blood pressure by 52±2 mm Hg. Simultaneously, constrictions of up to 33±6% were observed in the small arterioles (SAs; maximal inner diameter, 36 to 65 μm). The constrictions were not significantly altered by a local adrenergic blockade but were abolished when the pressure elevation in the cremaster arterioles was blocked by partial occlusion of the abdominal aorta. Diameters in large arterioles (LAs; maximal inner diameter, 65 to 127 μm), however, did not change significantly on NE infusion. Similar responses in the arterioles were observed when the local pressure was increased stepwise from 60 to 120 mm Hg by partial opening of the aortic occluder. However, after treatment of the cremaster tissue with the inhibitor of the NO synthase, N G -nitro- l -arginine (L-NNA, 30 μmol/L), a significant pressure-induced constriction of up to 16±3% occurred in LAs, whereas the magnitude of the constriction in SAs remained unchanged. L-NNA also abolished the increases in blood flow that were observed with increments in pressure in control animals. Similar results were obtained when Ang II was used to increase blood pressure. We conclude that a myogenic constriction of SAs contributes markedly to the overall response of cremaster arterioles to circulating vasoconstrictors. NO effectively opposes the myogenic response in LAs, thus preventing myogenic constrictions in a vascular region where constriction cannot be fully controlled by metabolic dilation. If this attenuating effect of NO on myogenic constriction also takes place in other organs, it might be a decisive mechanism in controlling changes of total peripheral vascular resistance elicited by vasoconstrictors.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3