Dopamine D 1 Receptor and Protein Kinase C Isoforms in Spontaneously Hypertensive Rats

Author:

Yao Lynne P.1,Li Xiao Xi1,Yu Pei-Ying1,Xu Jing1,Asico Laureano D.1,Jose Pedro A.1

Affiliation:

1. From the Walter Reed Army Medical Centers (L.P.Y.) and Georgetown University Medical Center, Washington, DC.

Abstract

Abstract —Dopamine, via D 1 -like receptors, stimulates the activity of both protein kinase A (PKA) and protein kinase C (PKC), which results in inhibition of renal sodium transport. Since D 1 -like receptors differentially regulate sodium transport in normotensive and hypertensive rats, they may also differentially regulate PKC expression in these rat strains. Thus, 2 different D 1 -like agonists (fenoldopam or SKF 38393) were infused into the renal artery of anesthetized normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (n=5 to 6/drug/strain). Ten or 60 minutes after starting the D 1 -like agonist infusion, both the infused kidney and the noninfused kidney that served as control were prepared for analysis. The D 1 -like agonists produced a greater diuresis and natriuresis and inhibited Na + ,K + -ATPase activity in proximal tubule (PT) and medullary thick ascending limb (mTAL) to a greater extent in WKY (Δ20±1%) than in SHR (Δ7±1%, P <0.001). D 1 -like agonists had no effect on PKC-α or PKC-λ expression in either membrane or cytosol but increased PKC-θ expression in PT in both WKY and SHR at 10 minutes but not at 60 minutes. However, membranous PKC-δ expression in PT and mTAL decreased in WKY but increased in SHR with either 10 or 60 minutes of D 1 -like agonist infusion. D 1 -like agonists also decreased membranous PKC-ζ expression in PT and mTAL in WKY but increased it in PT but not in mTAL in SHR. We conclude that there is differential regulation of PKC isoform expression by D 1 -like agonists that inhibits membranous PKC-δ and PKC-ζ in WKY but stimulates them in SHR; this effect in SHR is similar to the stimulatory effect of norepinephrine and angiotensin II and may be a mechanism for their differential effects on sodium transport.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3