Endothelin Enhances and Inhibits Adrenal Catecholamine Release in Deoxycorticosterone Acetate-Salt Hypertensive Rats

Author:

Lange Darrell L.1,Haywood Joseph R.1,Hinojosa-Laborde Carmen1

Affiliation:

1. From the Departments of Pharmacology (D.L.L., J.R.H.) and Physiology (C.H.-L.), University of Texas Health Science Center, San Antonio.

Abstract

Abstract —Endothelin (ET) and the sympathoadrenal system contribute to the development and maintenance of deoxycorticosterone acetate (DOCA)-salt hypertension. ET can act directly on the adrenal medulla to enhance the release of catecholamines. In addition, the level of ET peptide is increased in the adrenal glands of DOCA-salt hypertensive rats. Therefore, we tested the hypothesis that ET enhances adrenal medullary catecholamine release during DOCA-salt hypertension. The infusion of exogenous ET-1 into an isolated, perfused adrenal gland preparation resulted in an increase in the basal release of norepinephrine (NE) and epinephrine (EPI) in control and DOCA-salt hypertensive rats. Nerve-stimulated (0.3 Hz) release of NE was significantly inhibited during ET-1 infusion in the DOCA-salt hypertensive rats but not in the control rats. The role of endogenous ET on basal and nerve-stimulated NE and EPI release was also examined. An infusion of either BQ-123 (10 −7 mol/L), an ET A receptor antagonist, or BQ-788 (10 −7 mol/L), an ET B receptor antagonist, did not alter basal NE or EPI release in either control or DOCA-salt hypertensive rats. BQ-788 did not alter nerve-stimulated release of NE and EPI. In contrast, the nerve-stimulated release of EPI, but not NE, was enhanced during BQ-123 infusion in DOCA-salt hypertensive rats. Nerve-stimulated NE and EPI release was unaffected by BQ-123 in the control rats. These data suggest that ET can stimulate adrenal medullary catecholamine release in normotensive and DOCA-salt hypertensive rats. However, ET also inhibits adrenal medullary catecholamine release in DOCA-salt hypertensive rats.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3