Link of Nonhemodynamic Factors to Hemodynamic Determinants of Left Ventricular Hypertrophy

Author:

de Simone Giovanni1,Pasanisi Fabrizio1,Contaldo Franco1

Affiliation:

1. From the Department of Clinical and Experimental Medicine, Federico II University Hospital School of Medicine, Naples, Italy.

Abstract

Despite current evidence suggesting that hemodynamic load is the fundamental stimulus to begin the sequence of biological events leading to the development of left ventricular hypertrophy, genotype, gender, body size, and less easily recognizable environmental factors may contribute to generate the cascade of molecular changes that eventually yield the increase in protein synthesis needed to increase left ventricular mass. However, even nonhemodynamic factors such as gender and body size eventually regulate the growth of left ventricular mass by at least in part influencing loading conditions. Consideration of measurable factors, such as gender, body size, and hemodynamic load, allows evaluation of individual echocardiographic left ventricular mass as the deviation from the level that would be required to face a gender-specific hemodynamic load at a given body size. Values of left ventricular mass that are inappropriately high for individual gender, body size, and hemodynamic load are associated with a high cardiovascular risk phenotype, even independent of the presence of arterial hypertension. Thus, the condition of inappropriately high left ventricular mass may be recognized as a more advanced stage of pathological structural changes initially induced by overload, going beyond the compensatory needs. The biological process that yields inappropriate left ventricular mass is probably linked to the protracted activity over time of biological mediators of left ventricular hypertrophy, such as proto-oncogenes and other growth factors, neurohormones, and cytokines, inducing structural modifications that initially compensate imposed overload but eventually change the structure of myocardial tissue and the composition of motor units.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3