Orthostatic Stimuli Rapidly Change Plasma Adrenomedullin in Humans

Author:

Rössler Andreas1,László Zoltán1,Haditsch Bernd1,Hinghofer-Szalkay Helmut G.1

Affiliation:

1. From the Volume Regulation and Space Medicine Research Group, Department of Physiology, School of Medicine (A.R.), Karl-Franzens University, Graz, Austria; the Third Department of Medicine, Semmelweis University Medical School (Z.L.), Budapest, Hungary; and the Institute for Adaptive and Spaceflight Physiology (B.H., H.G.H-S.), Austrian Society for Aerospace Medicine, Graz, Austria.

Abstract

Abstract —The aim of this study was to evaluate the effect of orthostasis on the time course of plasma adrenomedullin concentration. On 5 different days, normotensive subjects were randomized to undergo for 30 minutes either 12°, 30°, 53°, or 70° passive head-up tilt or to remain supine. Venous blood was collected from each subject in the supine position before tilting, at 3 and 27 minutes during tilting, and at 2 and 50 minutes after orthostasis. Plasma adrenomedullin increased significantly with tilt of ≥30° in a stimulus-dependent manner. Approximately half of the increase seen at 27 minutes occurred during the first 2 minutes of upright positioning; the maximum effect with 70° tilt was +70%. Elevations in norepinephrine, epinephrine, aldosterone, plasma renin activity, vasopressin, heart rate, and mean arterial pressure were also significant. Hematocrit, blood density, plasma density, and plasma volume loss rose ( P <0.05) at 53° and 70° tilt. Our results indicate that adrenomedullin may play an important role in stabilization of hemodynamics during passive orthostasis. In conclusion, plasma adrenomedullin rapidly increases with orthostatic challenge in a stimulus-dependent manner and also swiftly returns to baseline levels after the subject resumes the supine position.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3