Affiliation:
1. From the Department of Medicine, Veterans Affairs Medical Center and University of Minnesota Medical School, Minnesota, Minn.
Abstract
Hypertension is accompanied by architectural changes in the kidney, heart, and vessels that are often maladaptive and can eventually contribute to end-organ disease such as renal failure, heart failure, and coronary disease. Nitric oxide, an endogenous vasodilator and antithrombotic agent synthesized in the endothelium by a constitutive nitric oxide synthase, inhibits growth-related responses to injury in vascular cells. Specifically, in the presence of hypertension, nitric oxide may work in the kidney by inhibiting both mesangial cell hypertrophy and hyperplasia as well as synthesis of extracellular matrix and in the heart and systemic vessels by modulating smooth muscle cell hypertrophy and hyperplasia. The effects of nitric oxide are antagonistic of the effects of angiotensin II. Shear stress and cyclic strain, physical forces known to operate in hypertension, are accompanied by increases in endothelial nitric oxide synthase expression, nitric oxide synthase protein, and nitric oxide synthase activity in endothelial cells. Experimental studies using genetic models of hypertension show a variation in hypertension-modulated vascular nitric oxide synthase activity in different strains of rats. These studies suggest that upregulation of vascular nitric oxide synthase activity is a homeostatic adaptation to increased hemodynamic workload in hypertension and that this may help prevent end-organ damage. If these findings apply to humans, differences in end-organ disease seen in patients with similar degrees of hypertension may be due in part to genetic differences in vascular nitric oxide synthase activity in response to hypertension.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献