Effect of Antioxidant Therapy on Blood Pressure and NO Synthase Expression in Hypertensive Rats

Author:

Vaziri Nosratola D.1,Ni Zhenmin1,Oveisi Fariba1,Trnavsky-Hobbs Debra L.1

Affiliation:

1. From the Division of Nephrology, Department of Medicine, University of California, Irvine.

Abstract

Abstract —Earlier studies have demonstrated evidence for increased reactive oxygen species, enhanced NO synthase (NOS) expression, and elevated NO production in spontaneously hypertensive rats (SHR). Given the negative-feedback regulation of NOS by NO, we hypothesized that enhanced NO inactivation by ROS may contribute to compensatory upregulation of NOS in SHR. The present study was designed to test this hypothesis. Eight-week-old male SHR and Wistar-Kyoto rats were treated for 3 weeks with either a placebo or the potent antioxidant, lazaroid (desmethyltirilazad, 10 mg · kg 1 · d 1 , by gastric gavage). Tail arterial blood pressure, urinary excretion of NO metabolites (ie, nitrate and nitrite), and immunodetectable NOS isotype proteins in the vascular, renal, cardiac, and cerebral tissues were measured. The placebo-treated SHR group showed a marked elevation of blood pressure and a significant upregulation of aorta, kidney, and cardiac tissue endothelial and inducible NOS (eNOS and iNOS, respectively) proteins and of brain and renal tissue neuronal NOS. Lazaroid therapy ameliorated hypertension and mitigated the upregulation of eNOS and iNOS in vascular, renal, and cardiac tissues but had limited effect on the expression of renal and brain neuronal NOS. In contrast, lazaroid therapy had no effect on blood pressure, urinary nitrate and nitrite excretion, or tissue NOS isotype expressions in the Wistar-Kyoto group. These findings support the role of oxidative stress in the genesis and/or maintenance of hypertension and compensatory upregulation of the expression of eNOS and iNOS in SHR.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 168 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3