Cytochrome P450–Dependent Renal Arachidonic Acid Metabolism in Desoxycorticosterone Acetate–Salt Hypertensive Mice

Author:

Honeck Horst1,Gross Volkmar1,Erdmann Bettina1,Kärgel Eva1,Neunaber Ralf1,Milia Anna Franca1,Schneider Wolfgang1,Luft Friedrich C.1,Schunck Wolf-Hagen1

Affiliation:

1. From the Max Delbrück Center for Molecular Medicine and Franz Volhard Clinic, Medical Faculty of the Charité, Humboldt University of Berlin, Berlin, Germany.

Abstract

Abstract —Cytochrome P450 (P450)-dependent arachidonic acid metabolites may act as mediators in the regulation of vascular tone and renal function. We studied arachidonic acid hydroxylase activities in renal microsomes from normotensive NMRI mice, desoxycorticosterone acetate (DOCA)-salt hypertensive mice, and DOCA-salt mice treated with either lovastatin or bezafibrate, both of which improve hemodynamics in this model. Control renal microsomes had arachidonic acid hydroxylase activities of 175±12 pmol · min −1 · mg −1 . The metabolites formed were 20- and 19-hydroxyarachidonic acid, representing ≈80% and ≈20% of the total hydroxylation. Treatment with DOCA-salt resulted in significantly decreased hydroxylase activities (to 84±4 pmol · min −1 · mg −1 ) of the total microsomal P450 content and a decrease in immunodetectable Cyp4a proteins. Lovastatin had no effect on these variables, whereas bezafibrate increased arachidonic acid hydroxylase activities to 163±12 pmol · min −1 · mg −1 . In situ hybridization with probes for Cyp4a-10, 12, and 14 revealed that Cyp4a-14 was the P450 isoform most strongly induced by bezafibrate. The expression was concentrated in the cortical medullary junction and was localized predominantly in the proximal tubules. In conclusion, these results suggest that the capacity to produce 20-hydroxyarachidonic acid is impaired in the kidneys of DOCA-salt hypertensive mice. Furthermore, bezafibrate may ameliorate hemodynamics in this model by restoring P450-dependent arachidonic acid hydroxylase activities. Lovastatin, on the other hand, exerts its effects via P450-independent mechanisms.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3