Effect of Lead on Nitric Oxide Synthase Expression in Coronary Endothelial Cells

Author:

Vaziri Nosratola D.1,Ding Yaoxian1

Affiliation:

1. From the Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine.

Abstract

Chronic exposure to low levels of lead causes hypertension (HTN) in humans and animals. We have previously shown that increased reactive oxygen species (ROS) leads to enhanced NO inactivation, depressed NO bioavailability, and compensatory upregulation of NO synthases (NOSs) in rats with lead-induced HTN. We have further demonstrated increased ROS generation with lead exposure in cultured endothelial cells. In the present study, we tested the effect of lead (medium containing lead acetate, 1 ppm) alone and with either the superoxide dismutase–mimetic agent tempol or a potent antioxidant lazaroid compound (both at 10 −8 and 10 −7 mol/L) on endothelial NOS expression and NO production in cultured human coronary endothelial cells. Lead-treated cells showed a significant upregulation of endothelial NOS (eNOS) protein abundance ( P <0.002) and a significant increase in the production of NO metabolites (NO 2 +NO 3 =NOx, P <0.01). Cotreatment with either tempol or lazaroid abrogated the lead-induced upregulation of eNOS protein and NO x production. In contrast, tempol and lazaroid had no effect on either eNOS protein expression or NO x production in the control cells. Thus, lead exposure upregulated eNOS expression in vitro, simulating the results of our previous in vivo studies. This phenomenon points to a direct as opposed to an indirect (eg, HTN-mediated) effect of lead on NO metabolism. The reversal of lead effect by lazaroid and the cell-permeable superoxide dismutase–mimetic agent tempol suggests that lead exposure increases generation and/or reduces dismutation of superoxide, which in turn promotes oxidative stress, enhances NO inactivation, and elicits a compensatory upregulation of eNOS whose expression is negatively regulated by NO.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3