Hyperbaric Oxygen Reduces Infarction Volume and Hemorrhagic Transformation Through ATP/NAD + /Sirt1 Pathway in Hyperglycemic Middle Cerebral Artery Occlusion Rats

Author:

Hu Qin1,Manaenko Anatol1,Bian Hetao1,Guo Zongduo1,Huang Jun-Long1,Guo Zhen-Ni1,Yang Peng1,Tang Jiping1,Zhang John H.1

Affiliation:

1. From the Discipline of Neuroscience, Department of Anatomy, Histology and Embryology, Shanghai Jiao Tong University School of Medicine, China (Q.H., J.-L.H.); Departments of Physiology and Pharmacology (Q.H., H.B., Z.G., Z.-N.G., P.Y., J.T., J.H.Z.) and Department of Anesthesiology (J.H.Z.), Loma Linda University School of Medicine, CA; and Department of Neurology, University of Erlangen-Nuremberg, Germany (A.M.).

Abstract

Background and Purpose— Energy depletion is a critical factor leading to cell death and brain dysfunction after ischemic stroke. In this study, we investigated whether energy depletion is involved in hyperglycemia-induced hemorrhagic transformation after ischemic stroke and determined the pathway underlying the beneficial effects of hyperbaric oxygen (HBO). Methods— After 2-hour middle cerebral artery occlusion, hyperglycemia was induced by injecting 50% dextrose (6 mL/kg) intraperitoneally at the onset of reperfusion. Immediately after it, rats were exposed to HBO at 2 atmospheres absolutes for 1 hour. ATP synthase inhibitor oligomycin A, nicotinamide phosphoribosyl transferase inhibitor FK866, or silent mating type information regulation 2 homolog 1 siRNA was administrated for interventions. Infarct volume, hemorrhagic volume, and neurobehavioral deficits were recorded; the level of blood glucose, ATP, and nicotinamide adenine dinucleotide and the activity of nicotinamide phosphoribosyl transferase were monitored; the expression of silent mating type information regulation 2 homolog 1, acetylated p53, acetylated nuclear factor-κB, and cleaved caspase 3 were detected by Western blots; and the activity of matrix metalloproteinase-9 was assayed by zymography. Results— Hyperglycemia deteriorated energy metabolism and reduced the level of ATP and nicotinamide adenine dinucleotide and exaggerated hemorrhagic transformation, blood–brain barrier disruption, and neurological deficits after middle cerebral artery occlusion. HBO treatment increased the levels of the ATP and nicotinamide adenine dinucleotide and consequently increased silent mating type information regulation 2 homolog 1, resulting in attenuation of hemorrhagic transformation, brain infarction, as well as improvement of neurological function in hyperglycemic middle cerebral artery occlusion rats. Conclusions— HBO induced activation of ATP/nicotinamide adenine dinucleotide/silent mating type information regulation 2 homolog 1 pathway and protected blood–brain barrier in hyperglycemic middle cerebral artery occlusion rats. HBO might be promising approach for treatment of acute ischemic stroke patients, especially patients with diabetes mellitus or treated with r-tPA (recombinant tissue-type plasminogen activator).

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3