17β-Estradiol Attenuates Hematoma Expansion Through Estrogen Receptor α/Silent Information Regulator 1/Nuclear Factor-kappa B Pathway in Hyperglycemic Intracerebral Hemorrhage Mice

Author:

Zheng Yun1,Hu Qin1,Manaenko Anatol1,Zhang Yang1,Peng Yan1,Xu Liang1,Tang Junjia1,Tang Jiping1,Zhang John H.1

Affiliation:

1. From the Departments of Physiology and Pharmacology (Y. Zheng, Q.H., A.M., Y. Zhang, Y.P., L.X., Junjia Tang, Jiping Tang, J.H.Z.), and Neurosurgery (J.H.Z.), Loma Linda University School of Medicine, Loma Linda, CA; and Department of Physiology, Medical School of Yangtze University, Jingzhou, Hubei, China (Y. Zheng).

Abstract

Background and Purpose— 17β-estradiol (E2) has been reported to reduce bleeding and brain injury in experimental intracerebral hemorrhage (ICH) model. However, it is not clear if E2 can prevent early hematoma expansion (HE) induced by hyperglycemia in acute ICH. The aim of this study is to evaluate the effects of E2 on HE and its potential mechanisms in hyperglycemic ICH mice. Methods— Two hundred, 8-week-old male CD1 mice were used. ICH was performed by collagenase injection. 50% dextrose (8 mL/kg) was injected intraperitoneally 3 hours after ICH to induce acute HE (normal saline was used as control). The time course of HE was measured 6, 24, and 72 hours after ICH. Two dosages (100 and 300 μg/kg) of E2 were administrated 1 hour after ICH intraperitoneally. Neurobehavioral deficits, hemorrhage volume, blood glucose level, and blood–brain barrier disruption were measured. To study the mechanisms of E2, estrogen receptor α (ERα) inhibitor methyl-piperidino-pyrazole, silent information regulator 1 (Sirt1) siRNA was administered, respectively. Protein expression of ERα, Sirt1, and acetylated nuclear factor-kappa B, and activity of matrix metalloproteinases-9 were detected. Results— Hyperglycemia enhanced HE and deteriorated neurological deficits after ICH from 6 hours after ICH. E2 treatment prevented blood–brain barrier disruption and improved neurological deficits 24 and 72 hours after ICH. E2 reduced HE by activating its receptor ERα, decreasing the expression of Sirt1, deacelylation of nuclear factor-kappa B, and inhibiting the activity of matrix metalloproteinases-9. ERα inhibitor methyl-piperidino-pyrazole and Sirt1 siRNA removed these effects of E2. Conclusions— E2 treatment prevented hyperglycemia-enhanced HE and improved neurological deficits in ICH mice mediated by ERα/Sirt1/nuclear factor-kappa B pathway. E2 may serve as an alternative treatment to decrease early HE after ICH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3