Leukocyte Invasion of the Brain After Experimental Intracerebral Hemorrhage in Mice

Author:

Mracsko Eva1,Javidi Ehsan1,Na Shin-Young1,Kahn Alexandra1,Liesz Arthur1,Veltkamp Roland1

Affiliation:

1. From the Department of Neurology, University Heidelberg, Heidelberg, Germany (E.M., E.J., S.-Y.N., A.K., A.L.); Institute for Stroke and Dementia Research, University Hospital Munich, Munich, Germany (A.L.); Munich Cluster for Systems Neurology (SyNergy), Munich, Germany (A.L.); and Division of Brain Sciences, Imperial College, London, United Kingdom (R.V.).

Abstract

Background and Purpose— Neuroinflammatory processes contribute to secondary neuronal damage after intracerebral hemorrhage. We aimed to characterize the time course of brain immigration of different leukocyte subsets after striatal injection of either autologous blood or collagenase in mice. Methods— Intracerebral hemorrhage was induced by injection of either autologous blood (20 μL) or collagenase (0.03 U) in C57Bl/6J mice. Hematoma volumetry was performed on cryosections. Blood volume was measured by hemoglobin spectrophotometry. Leukocytes were isolated from hemorrhagic hemisphere 1, 3, 5, and 14 days after intracerebral hemorrhage, stained for leukocyte markers, and measured by flow cytometry. Heterologous blood injection from CD45.1 mice was used to investigate the origin of brain-invading leukocytes. Results— Collagenase injection induced a larger hematoma volume but a similar blood content compared with blood injection. Cerebral leukocyte infiltration in the hemorrhagic hemisphere was similar in both models. The majority of leukocytes isolated from the brain originated from the circulation. CD4 + T lymphocytes were the predominant brain leukocyte population in both models. However, cerebral granulocyte counts were higher after collagenase compared with blood injection. Conclusions— Brain infiltration of systemic immune cells is similar in both murine intracerebral hemorrhage models. The pathophysiological impact of invading leukocytes and, in particular, of T cells requires further investigation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3