Derivation and External Validation of a Case Mix Model for the Standardized Reporting of 30-Day Stroke Mortality Rates

Author:

Bray Benjamin D.1,Campbell James1,Cloud Geoffrey C.1,Hoffman Alex1,James Martin1,Tyrrell Pippa J.1,Wolfe Charles D.A.1,Rudd Anthony G.1

Affiliation:

1. From the Division of Health and Social Care Research, King’s College London, London, United Kingdom (B.D.B., C.D.A.W., A.G.R.); Clinical Effectiveness Unit, Royal College of Physicians, London, United Kingdom (J.C., A.H.); Stroke Unit, St George’s NHS Trust, London, United Kingdom (G.C.C.); Stroke Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom (M.J.); Stroke Unit, Salford Royal NHS Foundation Trust, Salford, United Kingdom (P.J.T.); and National Institute for Health...

Abstract

Background and Purpose— Case mix adjustment is required to allow valid comparison of outcomes across care providers. However, there is a lack of externally validated models suitable for use in unselected stroke admissions. We therefore aimed to develop and externally validate prediction models to enable comparison of 30-day post-stroke mortality outcomes using routine clinical data. Methods— Models were derived (n=9000 patients) and internally validated (n=18 169 patients) using data from the Sentinel Stroke National Audit Program, the national register of acute stroke in England and Wales. External validation (n=1470 patients) was performed in the South London Stroke Register, a population-based longitudinal study. Models were fitted using general estimating equations. Discrimination and calibration were assessed using receiver operating characteristic curve analysis and correlation plots. Results— Two final models were derived. Model A included age (<60, 60–69, 70–79, 80–89, and ≥90 years), National Institutes of Health Stroke Severity Score (NIHSS) on admission, presence of atrial fibrillation on admission, and stroke type (ischemic versus primary intracerebral hemorrhage). Model B was similar but included only the consciousness component of the NIHSS in place of the full NIHSS. Both models showed excellent discrimination and calibration in internal and external validation. The c-statistics in external validation were 0.87 (95% confidence interval, 0.84–0.89) and 0.86 (95% confidence interval, 0.83–0.89) for models A and B, respectively. Conclusions— We have derived and externally validated 2 models to predict mortality in unselected patients with acute stroke using commonly collected clinical variables. In settings where the ability to record the full NIHSS on admission is limited, the level of consciousness component of the NIHSS provides a good approximation of the full NIHSS for mortality prediction.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3