Anoxia-Induced NF-kB-Dependent Upregulation of NCX1 Contributes to Ca 2+ Refilling Into Endoplasmic Reticulum in Cortical Neurons

Author:

Sirabella Rossana1,Secondo Agnese1,Pannaccione Anna1,Scorziello Antonella1,Valsecchi Valeria1,Adornetto Annagrazia1,Bilo Leonilda1,Di Renzo Gianfranco1,Annunziato Lucio1

Affiliation:

1. From the Division of Pharmacology (A. Secondo, A.P., A. Scorziello, V.V., A.A., L.B., G.D., L.A.), Department of Neuroscience, School of Medicine, “Federico II” University of Naples, Naples, Italy; and Fondazione IRCCS SDN (L.A., R.S.), Naples, Italy.

Abstract

Background and Purpose— The 3 gene products of the Na + /Ca 2+ exchanger (NCX), viz, NCX1, NCX2, and NCX3, may play a pivotal role in the pathophysiology of brain ischemia. The aim of this study was to investigate the transductional and posttranslational mechanisms involved in the expression of these isoforms during oxygen and glucose deprivation and their role in endoplasmic reticulum Ca 2+ refilling in cortical neurons. Methods— NCX1, NCX2, and NCX3 transcript and protein expression was evaluated in primary cortical neurons by reverse transcriptase–polymerase chain reaction and Western blot. NCX currents (I NCX ) and cytosolic Ca 2+ concentrations ([Ca 2+ ] i ) were monitored by means of patch-clamp in whole-cell configuration and Fura-2AM single-cell video imaging, respectively. Results— Exposure of cortical neurons to 3 hours of oxygen and glucose deprivation yielded dissimilar effects on the 3 isoforms. First, it induced an upregulation in NCX1 transcript and protein expression. This change was exerted at the transcriptional level because the inhibition of nuclear factor kappa B translocation by small interfering RNA against p65 and SN-50 prevented oxygen and glucose deprivation-induced NCX1 upregulation. Second, it elicited a downregulation of NCX3 protein expression. This change, unlike NCX1, was exerted at the posttranscriptional level because it was prevented by the proteasome inhibitor MG-132. Finally, we found that it significantly increased I NCX both in the forward and reverse modes of operation and promoted an increase in ER Ca 2+ accumulation. Interestingly, such accumulation was prevented by the silencing of NCX1 and the NCX inhibitor CB-DMB that triggered caspase-12 activation. Conclusions— These results suggest that nuclear factor kappa B-dependent NCX1 upregulation may play a fundamental role in Ca 2+ refilling in the endoplasmic reticulum, thus helping neurons to prevent endoplasmic reticulum stress during oxygen and glucose deprivation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3