Recombinant ADAMTS 13 Attenuates Brain Injury After Intracerebral Hemorrhage

Author:

Cai Ping1,Luo Haiyu1,Xu Haochen1,Zhu Ximin1,Xu Wenfang1,Dai Yiqin1,Xiao Jin1,Cao Yongliang1,Zhao Yuwu1,Zhao Bing-Qiao1,Fan Wenying1

Affiliation:

1. From the State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Collaborative Innovation Center for Brain Science and School of Basic Medical Sciences, Fudan University, Shanghai, China (P.C., H.L., H.X., X.Z., W.X., Y.D., J.X., Y.C., B.-Q.Z.,W.F.); Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fujian, China (P.C.); and Neurologic Department, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China (Y...

Abstract

Background and Purpose— Inflammatory responses and blood–brain barrier (BBB) dysfunction play important roles in brain injury after intracerebral hemorrhage (ICH). The metalloprotease ADAMTS 13 (a disintegrin and metalloprotease with thrombospondin type I motif, member 13) was shown to limit inflammatory responses through its proteolytic effects on von Willebrand factor. In the present study, we addressed the role of ADAMTS 13 after experimental ICH. Methods— ICH was induced in mice by intracerebral infusion of autologous blood. The peri-hematomal inflammatory responses, levels of matrix metalloproteinase-9 and intercellular adhesion molecule-1, pericyte coverage on brain capillaries, and BBB permeability were quantified at 24 hours. Functional outcomes, cerebral edema, and hemorrhagic lesion volume were quantified at day 3. Results— Treatment with recombinant ADAMTS 13 (rADAMTS 13) reduced the levels of chemokines and cytokines, myeloperoxidase activity, and microglia activation and neutrophil recruitment after ICH. rADAMTS 13 also decreased interleukin-6 expression in brain endothelial cells stimulated by lipopolysaccharide, whereas recombinant von Willebrand factor reversed this effect. The anti-inflammatory effect of rADAMTS 13 was accompanied by reduced expression of intercellular adhesion molecule-1 and less activation of matrix metalloproteinase, enhanced pericyte coverage of brain microvessels, and attenuated BBB disruption. Furthermore, neutrophil depletion protected against BBB damage, and rADAMTS 13 treatment had no further beneficial effect. Finally, treatment of mice with rADAMTS 13 reduced cerebral edema and hemorrhagic lesion volume and improved neurological functions. Conclusions— Our findings reveal the importance of rADAMTS 13 in regulating pathological inflammation and BBB function and suggest that rADAMTS 13 may provide a new therapeutic strategy for ICH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3