Use of Clinical Pathway Simulation and Machine Learning to Identify Key Levers for Maximizing the Benefit of Intravenous Thrombolysis in Acute Stroke

Author:

Allen Michael1ORCID,James Charlotte1ORCID,Frost Julia1ORCID,Liabo Kristin1ORCID,Pearn Kerry1ORCID,Monks Thomas1ORCID,Everson Richard2ORCID,Stein Ken1ORCID,James Martin3ORCID

Affiliation:

1. Medical School, University of Exeter, St Luke’s Campus, United Kingdom (M.A., C.J., J.F., K.L., K.P., T.M., K.S.).

2. Computer Science, University of Exeter, Streatham Campus, United Kingdom (R.E.).

3. Royal Devon and Exeter Hospital, Royal Devon and Exeter NHS Foundation Trust, United Kingdom (M.J.).

Abstract

Background: Expert opinion is that about 20% of emergency stroke patients should receive thrombolysis. Currently, 11% to 12% of patients in England and Wales receive thrombolysis, ranging from 2% to 24% between hospitals. The aim of this study was to assess how much variation is due to differences in local patient populations, and how much is due to differences in clinical decision-making and stroke pathway performance, while estimating a realistic target thrombolysis use. Methods: Anonymised data for 246 676 emergency stroke admissions to 132 acute hospitals in England and Wales between 2016 and 2018 was obtained from the Sentinel Stroke National Audit Programme data. We used machine learning to learn decisions on who to give thrombolysis to at each hospital. We used clinical pathway simulation to model effects of changing pathway performance. Qualitative research was used to assess clinician attitudes to these methods. Three changes were modeled: (1) arrival-to-treatment in 30 minutes, (2) proportion of patients with determined stroke onset times set to at least the national upper quartile, (3) thrombolysis decisions made based on majority vote of a benchmark set of hospitals. Results: Of the modeled changes, any single change was predicted to increase national thrombolysis use from 11.6% to between 12.3% to 14.5% (clinical decision-making having the most effect). Combined, these changes would be expected to increase thrombolysis to 18.3%, but there would still be significant variation between hospitals depending on local patient population. Clinicians engaged well with the modeling, but those from hospitals with lower thrombolysis use were most cautious about the methods. Conclusions: Machine learning and clinical pathway simulation may be applied at scale to national stroke audit data, allowing extended use and analysis of audit data. Stroke thrombolysis rates of at least 18% look achievable in England and Wales, but each hospital should have its own target.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3