Comparison of Bone Marrow Stromal Cells Derived From Stroke and Normal Rats for Stroke Treatment

Author:

Zacharek Alex1,Shehadah Amjad1,Chen Jieli1,Cui Xu1,Roberts Cynthia1,Lu Mei1,Chopp Michael1

Affiliation:

1. From the Departments of Neurology (A.Z., A.S., J.C., X.C., C.R., M.C.) and Biostatistics and Research Epidemiology (M.L.), Henry Ford Health Sciences Center, Detroit, Mich; and the Department of Physics (M.C.), Oakland University, Rochester, Mich.

Abstract

Background and Purpose— We compared the effect of treatment of stroke with bone marrow stromal cells from stroke rats (Isch-BMSC) and normal rats (Nor-BMSC) on functional outcome. Methods— Isch-BMSCs and Nor-BMSCs were intravenously injected into rats 24 hours after middle cerebral artery occlusion. To test the mechanism of Isch-BMSC-enhanced neurorestoration, Isch-BMSC and Nor-BMSC cultures were used. Results— Isch-BMSC significantly promoted functional outcome and enhanced angiogenesis, arterial density, and axonal regeneration compared with Nor-BMSC treatment animals. Isch-BMSCs exhibited increased Angiopoietin-1, Tie2, basic fibroblast growth factor, glial cell-derived neurotrophic factor, vascular endothelial growth factor, and Flk1 gene expression compared with Nor-BMSC. Using transwell coculture of BMSCs with brain-derived endothelial cells, Isch-BMSCs increased phosphorylated-Tie2 activity in brain-derived endothelial cells and enhanced brain-derived endothelial cells capillary tube formation compared with Nor-BMSCs. Inhibition of Tie2 gene expression in brain-derived endothelial cells using siRNA significantly attenuated BMSC-induced capillary tube formation. Conclusions— These data suggest that Isch-BMSCs are superior to Nor-BMSCs for the neurorestorative treatment of stroke, which may be mediated by the enhanced trophic factor and angiogenic characteristics of Isch-BMSCs.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3