Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography

Author:

Amukotuwa Shalini A.1,Straka Matus2,Smith Heather3,Chandra Ronil V.4,Dehkharghani Seena5,Fischbein Nancy J.6,Bammer Roland7

Affiliation:

1. From the Diagnostic Imaging, Monash Health, Clayton, Australia and Department of Radiology, Barwon Health, Geelong, Australia (S.A.A.)

2. Stanford Stroke Center, Stanford University School of Medicine, CA (M.S.)

3. Department of Neurology, Barwon Health, Geelong, Australia (H.S.)

4. Diagnostic Imaging, Monash Health, Clayton, Australia (R.V.C.)

5. Department of Radiology, New York University Langone Medical Center (S.D.)

6. Department of Radiology, Stanford University, CA (N.J.F.)

7. Department of Radiology, University of Melbourne, Parkville, Australia (R.B.).

Abstract

Background and Purpose— Endovascular thrombectomy is highly effective in acute ischemic stroke patients with an anterior circulation large vessel occlusion (LVO), decreasing morbidity and mortality. Accurate and prompt identification of LVOs is imperative because these patients have large volumes of tissue that are at risk of infarction without timely reperfusion, and the treatment window is limited to 24 hours. We assessed the accuracy and speed of a commercially available fully automated LVO-detection tool in a cohort of patients presenting to a regional hospital with suspected stroke. Methods— Consecutive patients who underwent multimodal computed tomography with thin-slice computed tomography angiography between January 1, 2017 and December 31, 2018 for suspected acute ischemic stroke within 24 hours of onset were retrospectively identified. The multimodal computed tomographies were assessed by 2 neuroradiologists in consensus for the presence of an intracranial anterior circulation LVO or M2-segment middle cerebral artery occlusion (the reference standard). The patients’ computed tomography angiographies were then processed using an automated LVO-detection algorithm (RAPID CTA). Receiver-operating characteristic analysis was used to determine sensitivity, specificity, and negative predictive value of the algorithm for detection of (1) an LVO and (2) either an LVO or M2-segment middle cerebral artery occlusion. Results— CTAs from 477 patients were analyzed (271 men and 206 women; median age, 71; IQR, 60–80). Median processing time was 158 seconds (IQR, 150–167 seconds). Seventy-eight patients had an anterior circulation LVO, and 28 had an isolated M2-segment middle cerebral artery occlusion. The sensitivity, negative predictive value, and specificity were 0.94, 0.98, and 0.76, respectively for detection of an intracranial LVO and 0.92, 0.97, and 0.81, respectively for detection of either an intracranial LVO or M2-segment middle cerebral artery occlusion. Conclusions— The fully automated algorithm had very high sensitivity and negative predictive value for LVO detection with fast processing times, suggesting that it can be used in the emergent setting as a screening tool to alert radiologists and expedite formal diagnosis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3