Bone Marrow Mononuclear Cells Activate Angiogenesis via Gap Junction–Mediated Cell-Cell Interaction

Author:

Kikuchi-Taura Akie1,Okinaka Yuka1,Takeuchi Yukiko1,Ogawa Yuko1,Maeda Mitsuyo123,Kataoka Yosky23,Yasui Teruhito4,Kimura Takafumi5,Gul Sheraz6,Claussen Carsten6,Boltze Johannes17,Taguchi Akihiko1ORCID

Affiliation:

1. From the Department of Regenerative Medicine Research, Institute of Biomedical Research and Innovation, Kobe, Japan (A.K.-T., Y. Okinaka, Y.T., Y. Ogawa, M.M., J.B., A.T.)

2. Multi-Modal Microstructure Analysis Unit, RIKEN-JEOL Collaboration Center, RIKEN, Kobe, Japan (M.M., Y.K.)

3. Laboratory for Cellular Function Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan (M.M., Y.K.)

4. National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan (T.Y.)

5. Japanese Red Cross Kinki Block Blood Center, Ibaraki, Japan (T.K.)

6. Fraunhofer Institute for Molecular Biology and Applied Ecology IME – ScreeningPort, Hamburg, Germany (S.G., C.C.)

7. School of Life Sciences, University of Warwick, Coventry, United Kingdom (J.B.).

Abstract

Background and Purpose— Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells and have been widely used in experimental therapies for patients with ischemic diseases. Activation of angiogenesis is believed to be one of major BM-MNC mode of actions, but the essential mechanism by which BM-MNCs activate angiogenesis have hitherto been elusive. The objective of this study is to reveal the mechanism how BM-MNCs activate angiogenesis. Methods— We have evaluated the effect of direct cell-cell interaction between BM-MNC and endothelial cell on uptake of VEGF (vascular endothelial growth factor) into endothelial cells in vitro. Cerebral ischemia model was used to evaluate the effects of direct cell-cell interaction with transplanted BM-MNC on endothelial cell at ischemic tissue. Results— The uptake of VEGF into endothelial cells was increased by BM-MNC, while being inhibited by blockading the gap junction. Low-molecular-weight substance was transferred from BM-MNC into endothelial cells via gap junctions in vivo, followed by increased expression of hypoxia-inducible factor-1α and suppression of autophagy in endothelial cells. The concentration of glucose in BM-MNC cytoplasm was significantly higher than in endothelial cells, and transfer of glucose homologue from BM-MNC to endothelial cells was observed. Conclusions— Our findings demonstrated cell-cell interaction via gap junction is the prominent pathway for activation of angiogenesis at endothelial cells after ischemia and provided novel paradigm that energy source supply by stem cell to injured cell is one of the therapeutic mechanisms of cell-based therapy. Visual Overview— An online visual overview is available for this article.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3