Central Nervous System Electrical Stimulation for Neuroprotection in Acute Cerebral Ischemia

Author:

Bahr Hosseini Mersedeh1,Hou Jesse1,Bikson Marom2,Iacoboni Marco3,Gornbein Jeffrey2,Saver Jeffrey L.1

Affiliation:

1. From the Department of Neurology and Comprehensive Stroke Center (M.B.H., J.H., J.L.S.), David Geffen School of Medicine at UCLA

2. Department of Biomedical Engineering, The City College of New York (CCNY) (M.B.).

3. Department of Psychiatry and Biobehavioral Sciences (M.I.), David Geffen School of Medicine at UCLA

Abstract

Background and Purpose— Brain electrical stimulation, widely studied to facilitate recovery from stroke, has also been reported to confer direct neuroprotection in preclinical models of acute cerebral ischemia. Systematic review of controlled preclinical acute cerebral ischemia studies would aid in planning for initial human clinical trials. Methods— A systematic Medline search identified controlled, preclinical studies of central nervous system electrical stimulation in acute cerebral ischemia. Studies were categorized among 6 stimulation strategies. Three strategies applied different stimulation types to tissues within the ischemic zone (cathodal hemispheric stimulation [CHS], anodal hemispheric stimulation, and pulsed hemispheric stimulation), and 3 strategies applied deep brain stimulation to different neuronal targets remote from the ischemic zone (fastigial nucleus stimulation, subthalamic vasodilator area stimulation, and dorsal periaqueductal gray stimulation). Random-effects meta-analysis assessed electrical stimulation modification of final infarct volume. Study-level risk of bias and intervention-level readiness-for-translation were assessed using formal rating scales. Results— Systematic search identified 28 experiments in 21 studies, including a total of 350 animals, of electrical stimulation in preclinical acute cerebral ischemia. Overall, in animals undergoing electrical stimulation, final infarct volumes were reduced by 37% (95% CI, 34%–40%; P <0.001), compared with control. There was evidence of heterogeneity of efficacy among stimulation strategies ( I 2 =93.1%, P heterogeneity <0.001). Among the within-ischemic zone stimulation strategies, only CHS significantly reduced the infarct volume (27 %; 95% CI, 22%–33%; P <0.001); among the remote-from ischemic zone approaches, all (fastigial nucleus stimulation, subthalamic vasodilator area stimulation, and dorsal periaqueductal gray stimulation) reduced infarct volumes by approximately half. On formal rating scales, CHS studies had the lowest risk of bias, and CHS had the highest overall quality of intervention-level evidence supporting readiness to proceed to clinical testing. Conclusions— Electrical stimulation reduces final infarct volume across preclinical studies. CHS shows the most robust evidence and is potentially appropriate for progression to early-stage human clinical trial testing as a promising neuroprotective intervention.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialized Nursing,Cardiology and Cardiovascular Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3