Stroke Prognostic Scores and Data-Driven Prediction of Clinical Outcomes After Acute Ischemic Stroke

Author:

Matsumoto Koutarou12,Nohara Yasunobu3,Soejima Hidehisa4,Yonehara Toshiro5,Nakashima Naoki3,Kamouchi Masahiro16ORCID

Affiliation:

1. From the Department of Health Care Administration and Management (K.M., M.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

2. Department of Medical Support (K.M.), Saiseikai Kumamoto Hospital, Japan

3. Medical Information Center, Kyushu University Hospital, Fukuoka, Japan (Y.N., N.N.).

4. Department of Inspection (H.S.), Saiseikai Kumamoto Hospital, Japan

5. Department of Neurology (T.Y.), Saiseikai Kumamoto Hospital, Japan

6. Center for Cohort Studies (M.K.), Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan

Abstract

Background and Purpose— Several stroke prognostic scores have been developed to predict clinical outcomes after stroke. This study aimed to develop and validate novel data-driven predictive models for clinical outcomes by referring to previous prognostic scores in patients with acute ischemic stroke in a real-world setting. Methods— We used retrospective data of 4237 patients with acute ischemic stroke who were hospitalized in a single stroke center in Japan between January 2012 and August 2017. We first validated point-based stroke prognostic scores (preadmission comorbidities, level of consciousness, age, and neurological deficit [PLAN] score, ischemic stroke predictive risk score [IScore], and acute stroke registry and analysis of Lausanne [ASTRAL] score in all patients; Houston intraarterial recanalization therapy [HIAT] score, totaled health risks in vascular events [THRIVE] score, and stroke prognostication using age and National Institutes of Health Stroke Scale-100 [SPAN-100] in patients who received reperfusion therapy) in our cohort. We then developed predictive models using all available data by linear regression or decision tree ensembles (random forest and gradient boosting decision tree) and evaluated their area under the receiver operating characteristic curve for clinical outcomes after repeated random splits. Results— The mean (SD) age of the patients was 74.7 (12.9) years and 58.3% were men. Area under the receiver operating characteristic curves (95% CIs) of prognostic scores in our cohort were 0.92 PLAN score (0.90–0.93), 0.86 for IScore (0.85–0.87), 0.85 for ASTRAL score (0.83–0.86), 0.69 for HIAT score (0.62–0.75), 0.70 for THRIVE score (0.64–0.76), and 0.70 for SPAN-100 (0.63–0.76) for poor functional outcomes, and 0.87 for PLAN score (0.85–0.90), 0.88 for IScore (0.86–0.91), and 0.88 ASTRAL score (0.85–0.91) for in-hospital mortality. Internal validation of data-driven prediction models showed that their area under the receiver operating characteristic curves ranged between 0.88 and 0.94 for poor functional outcomes and between 0.84 and 0.88 for in-hospital mortality. Ensemble models of a decision tree tended to outperform linear regression models in predicting poor functional outcomes but not in predicting in-hospital mortality. Conclusions— Stroke prognostic scores perform well in predicting clinical outcomes after stroke. Data-driven models may be an alternative tool for predicting poststroke clinical outcomes in a real-world setting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3