IL (Interleukin)-15 Bridges Astrocyte-Microglia Crosstalk and Exacerbates Brain Injury Following Intracerebral Hemorrhage

Author:

Shi Samuel X.12,Li Yu-Jing3,Shi Kaibin1,Wood Kristofer1,Ducruet Andrew F.1,Liu Qiang1ORCID

Affiliation:

1. From the Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, AZ (S.X.S., K.S., K.W., A.F.D., Q.L.)

2. Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe (S.X.S.)

3. Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix (Y.-J.L.).

Abstract

Background and Purpose— Microglia are among the first cells to respond to intracerebral hemorrhage (ICH), but the mechanisms that underlie their activity following ICH remain unclear. IL (interleukin)-15 is a proinflammatory cytokine that orchestrates homeostasis and the intensity of the immune response following central nervous system inflammatory events. The goal of this study was to investigate the role of IL-15 in ICH injury. Methods— Using brain slices of patients with ICH, we determined the presence and cellular source of IL-15. A transgenic mouse line with targeted expression of IL-15 in astrocytes was generated to determine the role of astrocytic IL-15 in ICH. The expression of IL-15 was controlled by a glial fibrillary acidic protein promoter (GFAP-IL-15 tg ). ICH was induced by intraparenchymal injection of collagenase or autologous blood. Results— In patients with ICH and wild-type mice subjected to experimental ICH, we found a significant upregulation of IL-15 in astrocytes. In GFAP-IL-15 tg mice, we found that astrocyte-targeted expression of IL-15 exacerbated brain edema and neurological deficits following ICH. This aggravated ICH injury in GFAP-IL-15 tg mice is accompanied by increased microglial accumulation in close proximity to astrocytes in perihematomal tissues. Additionally, microglial expression of CD86, IL-1β, and TNF-α is markedly increased in GFAP-IL-15 tg mice following ICH. Furthermore, depletion of microglia using a colony stimulating factor 1 receptor inhibitor diminishes the exacerbation of ICH injury in GFAP-IL-15 tg mice. Conclusions— Our findings identify IL-15 as a mediator of the crosstalk between astrocytes and microglia that exacerbates brain injury following ICH.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3