Affiliation:
1. From the Department of Neurosurgery (L.L., F.K., M.F., F.N., H.S.), Department of Pathology and Matrix Biology (K.I.-Y., T.Y.), and Research Center for Matrix Biology (K.I.-Y., T.Y., H.S.), Mie University Graduate School of Medicine, Tsu, Japan.
Abstract
Background and Purpose—
A matricellular protein tenascin-C is implicated in early brain injury after experimental subarachnoid hemorrhage (SAH). This study first evaluated the role of another matricellular protein periostin and the relationships with tenascin-C in post-SAH early brain injury.
Methods—
Wild-type (n=226) and tenascin-C knockout (n=9) C57BL/6 male adult mice underwent sham or filament perforation SAH modeling. Vehicle, anti-periostin antibody, or recombinant periostin was randomly administrated by an intracerebroventricular injection at 30 minutes post-modeling. Neuroscores, SAH grading, brain water content, immunostaining, and Western blotting were blindly evaluated at 24 to 48 hours post-SAH.
Results—
Periostin was induced in brain capillary endothelial cells and neurons at 24 hours post-SAH. Anti-periostin antibody improved post-SAH neurobehavior, brain edema, and blood–brain barrier disruption associated with downregulation of tenascin-C, inactivation of p38, extracellular signal-related kinase 1/2 and matrix metalloproteinase-9, and subsequent preservation of zona occludens-1. Recombinant periostin aggravated post-SAH brain edema and tenascin-C induction. Tenascin-C knockout prevented post-SAH neurobehavioral impairments and periostin induction.
Conclusions—
Periostin may cause post-SAH early brain injury through activating downstream signaling pathways and interacting with tenascin-C, providing a novel approach for the treatment of early brain injury.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献