Comparison of Computed Tomography Perfusion and Magnetic Resonance Imaging Perfusion-Diffusion Mismatch in Ischemic Stroke

Author:

Campbell Bruce C.V.1,Christensen Søren1,Levi Christopher R.1,Desmond Patricia M.1,Donnan Geoffrey A.1,Davis Stephen M.1,Parsons Mark W.1

Affiliation:

1. From the Departments of Medicine and Neurology (B.C.V.C., S.M.D.), and the Department of Radiology (B.C.V.C., S.C., P.M.D.), The Melbourne Brain Centre at Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia; Priority Research Centre for Translational Neuroscience and Mental Health (C.R.L., M.W.P.), University of Newcastle and Hunter Medical Research Institute, Newcastle, Australia; Florey Neuroscience Institutes (G.A.D.), The University of Melbourne, Parkville, Victoria...

Abstract

Background and Purpose— Perfusion imaging has the potential to select patients most likely to respond to thrombolysis. We tested the correspondence of computed tomography perfusion (CTP)-derived mismatch with contemporaneous perfusion-diffusion magnetic resonance imaging (MRI). Methods— Acute ischemic stroke patients 3 to 6 hours after onset had CTP and perfusion-diffusion MRI within 1 hour, before thrombolysis. Relative cerebral blood flow (relCBF) and time to peak of the deconvolved tissue residue function (Tmax) were calculated. The diffusion lesion (diffusion-weighted imaging) was registered to the CTP slabs and manually outlined to its maximal visual extent. Volumetric accuracy of CT-relCBF infarct core (compared with diffusion-weighted imaging) was tested. To reduce false-positive low CBF regions, relCBF core was restricted to voxels within a relative time-to-peak (relTTP) >4 seconds for lesion region of interest. The MR-Tmax >6 seconds perfusion lesion was automatically segmented and registered to CTP. Receiver-operating characteristic analysis determined the optimal CT-Tmax threshold to match MR-Tmax >6 seconds. Agreement of these CT parameters with MR perfusion-diffusion mismatch in coregistered slabs was assessed (mismatch ratio >1.2, absolute mismatch >10 mL, infarct core <70 mL). Results— In analysis of 49 patients (mean onset to CT, 213 minutes; mean CT to MR, 31 minutes), constraining relCBF <31% within the automated relTTP perfusion lesion region of interest reduced the median magnitude of volumetric error (vs diffusion-weighted imaging) from 47.5 mL to 15.8 mL ( P <0.001). The optimal CT-Tmax threshold to match MR-Tmax >6 seconds was 6.2 seconds (95% confidence interval, 5.6–7.3 seconds; sensitivity, 91%; specificity, 70%; area under the curve, 0.87). Using CT-Tmax >6 seconds “penumbra” and relTTP-constrained relCBF “core,” CT-based and MRI-based mismatch status was concordant in 90% (kappa=0.80). Conclusions— Quantitative CTP mismatch classification using relCBF and Tmax is similar to perfusion-diffusion MRI. The greater accessibility of CTP may facilitate generalizability of mismatch-based selection in clinical practice and trials.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Advanced and Specialised Nursing,Cardiology and Cardiovascular Medicine,Clinical Neurology

Cited by 189 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3