Induction of myocardial insulin-like growth factor-I gene expression in left ventricular hypertrophy.

Author:

Donohue T J1,Dworkin L D1,Lango M N1,Fliegner K1,Lango R P1,Benstein J A1,Slater W R1,Catanese V M1

Affiliation:

1. Department of Medicine, New York University Medical Center, NY 10016.

Abstract

BACKGROUND Left ventricular hypertrophy is a generalized adaptation to increased afterload, but the growth factors mediating this response have not been identified. To explore whether the hypertrophic response was associated with changes in local insulin-like growth factor-I (IGF-I) gene regulation, we examined the induction of the cardiac IGF-I gene in three models of systolic hypertension and resultant hypertrophy. METHODS AND RESULTS The model systems were suprarenal aortic constriction, uninephrectomized spontaneously hypertensive rats (SHR), and uninephrectomized, deoxycorticosterone-treated, saline-fed rats (DOCA salt). Systolic blood pressure reached hypertensive levels at 3 to 4 weeks in all three systems. A differential increase in ventricular weight to body weight (hypertrophy) occurred at 3 weeks in the SHR and aortic constriction models and at 4 weeks in the DOCA salt model. Ventricular IGF-I mRNA was detected by solution hybridization/RNase protection assay. IGF-I mRNA levels increased in all three systems coincident with the onset of hypertension and the development of ventricular hypertrophy. Maximum induction was 10-fold over control at 5 weeks in the aortic constriction model, 8-fold at 3 weeks in the SHR, and 6-fold at 6 weeks in the DOCA salt model. IGF-I mRNA levels returned to control values by the end of the experimental period despite continued hypertension and hypertrophy in all three systems. In contrast, ventricular c-myc mRNA content increased twofold to threefold at 1 week and returned to control levels by 2 weeks. Ventricular IGF-I receptor mRNA levels were unchanged over the time course studied. The increased ventricular IGF-I mRNA content was reflected in an increased ventricular IGF-I protein content, as determined both by radioimmunoassay and immunofluorescence histochemistry. CONCLUSIONS We conclude that (1) hypertension induces significant increases in cardiac IGF-I mRNA and protein that occur coordinately with its onset and early in the development of hypertrophy, (2) IGF-I mRNA levels normalize as the hypertrophic response is established, (3) in comparison to IGF-I, both c-myc and IGF-I receptor genes are differentially controlled in experimental hypertension. These findings suggest that IGF-I may participate in initiating ventricular hypertrophy in response to altered loading conditions. The consistency of these findings in models of high-, moderate-, and low-renin hypertension suggests that they occur independently of the systemic renin-angiotensin endocrine axis.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3