Reperfusion injury and its pharmacologic modification.

Author:

Opie L H1

Affiliation:

1. Heart Research Unit, University of Cape Town, Medical School, South Africa.

Abstract

Reperfusion injury includes a spectrum of events, such as reperfusion arrhythmias, vascular damage and no-reflow, and myocardial functional stunning. The concept of reperfusion injury remains controversial with many proposed mechanisms when applied to humans, whereas in animal models, there are two main proposed mechanisms: calcium over-load and formation of oxygen free radicals. To prove that reperfusion injury is specifically caused by reperfusion would require evidence that an intervention given at the time of reperfusion can diminish or abolish the injury as in the case of arrhythmias, which are thought to be mediated by excess recycling of cytosolic calcium with delayed afterdepolarizations and ventricular automaticity. In the case of myocardial stunning, the phenomenon may be mediated, at least in part, by a burst of free radicals formed within the first minute of reperfusion and improved by free radical scavengers given at the time of reperfusion. The alternate hypothesis is that cytosolic calcium overload damages mechanisms for normal intracellular calcium regulation so that the stunned myocardium responds to agents that are thought to increase intracellular cytosolic calcium, such as beta-receptor agonists. A further component of reperfusion injury, under active investigation, is microvascular damage with alterations at the level of platelets, leukocytes, and endothelial integrity. From the therapeutic point of view, the divergent results of experimental interventions and the possibility that the abrupt onset of reperfusion in animals differs from the situation in humans with thrombolysis means that the best way currently available to limit reperfusion injury is by minimizing the ischemic period by early reperfusion and by optimizing the metabolic status of the ischemic myocardium at the end of the ischemic period.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference93 articles.

1. The stunned myocardium: prolonged, postischemic ventricular dysfunction.

2. Reperfusion injury: laboratory artifact or clinical dilemma?

3. Myocardial ischemia revisited. The osmolar load, membrane damage, and reperfusion

4. Jennings RB Shen AC: Calcium in experimental myocardial ischemia in Bajusz E Rona G (eds): Recent Advances in Studies on Cardiac Structure and Metabolism. Baltimore University Park Press 1972 pp 639- 655

5. Mitochondrial structure and function in acute myocardial ischemic injury;Jennings RB;Circ Res,1976

Cited by 524 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3