Synchronized repolarization after defibrillation shocks. A possible component of the defibrillation process demonstrated by optical recordings in rabbit heart.

Author:

Dillon S M1

Affiliation:

1. Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York City, NY 10032.

Abstract

BACKGROUND It is currently believed that defibrillation shocks act primarily by stimulating excitable myocardium to abolish wave fronts. Recent studies have shown that shocks applied during pacing not only stimulate excitable myocardium but also prolong the depolarization and refractoriness of myocardium already in a depolarized state. This study investigates the effects of shocks on fibrillation action potentials. METHODS AND RESULTS Recordings of membrane action potentials free of shock artifact were obtained using the voltage-sensitive dye WW781 during defibrillation of isolated rabbit hearts. These records showed that the shocks caused an additional phase of depolarization beginning with an initial rapid depolarization of the optical signal followed by a slow phase of repolarization. This occurred throughout all phases of the fibrillation action potential from just after completion of the upstroke to a time of near maximal repolarization. Defibrillation shocks, however, had the additional effect of causing the myocardium to repolarize at a constant time after the shock regardless of its prior electrical activity--the constant repolarization time response. This effect was not dependent on the presence of D600 (methoxyverapamil) or continuous coronary perfusion. It was accompanied by a similar constancy in the return of myocardial excitability. Recordings taken from multiple adjacent recording sites also showed a constant repolarization time among them. CONCLUSIONS A simple model of reentry is used to illustrate how the constant repolarization response, in addition to wave front termination and refractoriness extension, could play a role in the successful termination of fibrillation by electrical shock.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3