Singlet oxygen-induced arrhythmias. Dose- and light-response studies for photoactivation of rose bengal in the rat heart.

Author:

Kusama Y1,Bernier M1,Hearse D J1

Affiliation:

1. Cardiovascular Research, Rayne Institute, St. Thomas' Hospital, London, UK.

Abstract

In a study of aerobically perfused rat hearts, the in situ photoactivation (530-590 nm) of rose bengal (a process that leads to the production of singlet oxygen and superoxide) has been shown to lead to the rapid development of electrocardiographic abnormalities and arrhythmias. With rose bengal concentrations of 1,000, 500, 250, 100, and 50 nmol/l (n = 6/group), photoactivation (3,600 lx) led to electrocardiographic changes (inversion of the T wave, Q-T prolongation, or both) after 3.8 +/- 0.9, 4.5 +/- 0.7, 11.8 +/- 2.1, 24.8 +/- 3.9, and 65.3 +/- 6.0 seconds), respectively; ventricular premature beats occurred in 100% of hearts after 0.5 +/- 0.2, 1.1 +/- 0.3, 2.2 +/- 0.7, 4.4 +/- 0.8, and 6.6 +/- 1.2 minutes, respectively. Ventricular tachycardia occurred in 83%, 83%, 83%, 67%, and 50% of hearts after 2.1 +/- 0.2, 2.1 +/- 0.4, 2.8 +/- 0.7, 5.7 +/- 2.0, and 11.2 +/- 1.9 minutes, respectively, and complete atrioventricular block in 100%, 100%, 100%, 100%, and 67% of hearts after 3.8 +/- 0.7, 6.5 +/- 1.0, 5.5 +/- 0.9, 13.8 +/- 1.0, and 14.1 +/- 0.9 minutes, respectively. With a fixed concentration (250 nmol/l) of rose bengal, similar light-response relations were observed. Photoactivation of rose bengal had no effect on heart rate but caused a transient (0-4 minutes) vasodilation followed by a progressive vasoconstriction. In further studies in which rose bengal was washed out for 10 minutes before photoactivation, several arrhythmias still developed, indicating that rose bengal binds strongly to tissue and acts as a cellular level rather than in the vascular compartment. To assess the reversibility of rose bengal-induced effects, hearts (n = 6/group) were perfused with rose bengal (250 nmol/l) for 1, 2, 4, 6, and 20 minutes followed by perfusion in the dark for 19, 18, 16, 14, and 0 minutes, respectively. During dark perfusion, the incidence of arrhythmias declined and any decrease in coronary flow was reversed. However, analysis of contents of adenosine triphosphate, creatine phosphate, lactate, and creatine kinase leakage indicated the occurrence of severe injury that did not abate on termination of photoactivation. Finally, although many arrhythmias developed before the onset of vasoconstriction, the reduction in flow with consequent ischemia was shown to exacerbate vulnerability to arrhythmias. In conclusion, short-lived reactive oxygen intermediates such as singlet oxygen and superoxide, which are produced during the photoactivation of rose bengal, can cause rapid and major damage to the heart and its function.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference26 articles.

1. Singlet oxygen-induced arrhythmias: Light-response characteristics for photosensitization of rose bengal (abstract);Kusama Y;Circulation,1988

2. Pathophysiology of Cardiomyocytes

3. A new method to study activated oxygen species induced damage in cardiomyocytes and protection by Ca2+-Antagonists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3