Affiliation:
1. Department of Medicine, University of California, School of Medicine, San Diego 92103-8411.
Abstract
BACKGROUND
Recent studies of human type 1 atrial flutter demonstrated reentry in the right atrium and an area of slow conduction in the low posteroseptal right atrium. Direct-current catheter ablation of this area has been only moderately successful in preventing recurrence. Therefore, we performed endocardial activation mapping and entrainment pace mapping during atrial flutter to determine the critical site for radiofrequency ablation of this arrhythmia.
METHODS AND RESULTS
Twelve consecutive patients (seven men and five women; age, 21-73 years) with type 1 atrial flutter (mean cycle length, 253 +/- 39 msec) underwent right atrial endocardial activation and entrainment pace mapping using standard transvenous catheter techniques to localize the atrial flutter reentrant circuit, the area of slow conduction, and the exit site from the area of slow conduction. Upon identifying appropriate sites, radiofrequency energy (16-29 W) was applied via a 4-mm tipped catheter. Activation mapping of atrial flutter revealed a counterclockwise reentrant wave front originating just inferior or posterior to the coronary sinus ostium, proceeding superiorly in the atrial septum to the right atrial free wall, then inferiorly toward the tricuspid annulus and finally medially between the inferior vena cava and the tricuspid annulus, where low-amplitude fragmented electrical activity was noted. Entrainment pace mapping from this area produced an exact P wave match to atrial flutter on 12-lead ECG with a long (greater than 40 msec) stimulus-to-P interval indicating slow conduction, whereas pacing just inferior or posterior to the coronary sinus ostium produced an exact P wave match with a short stimulus-to-P interval (less than 40 msec), presumably identifying the exit site from the area of slow conduction. Radiofrequency energy (one to 14 applications) was effective in terminating and preventing reinduction of atrial flutter in 10 patients. In two patients, atrial flutter was not terminated during radiofrequency energy application but during subsequent pacing attempts. Sites where ablation was successful, located just inferior or posterior to the coronary sinus ostium, were characterized by discrete electrograms with activation times of -20 to -50 msec before P wave onset and exact entrainment pace maps with a stimulus-to-P interval of 20 to 40 msec, consistent with the exit site from the area of slow conduction. Follow-up (mean, 16 +/- 9 weeks; range, 2-31 weeks) revealed recurrence of the original atrial flutter in two patients, one of whom underwent repeat ablation without further recurrence, self-limited infrequent recurrence of a new atrial flutter or atrial fibrillation in three suppressed by beta-blocker or digoxin, and no recurrence in seven.
CONCLUSIONS
1) Radiofrequency energy applied to a critical area in the atrial flutter reentrant circuit, inferior or posterior to the coronary sinus ostium, will terminate and prevent arrhythmia reinduction. 2) Long-term follow-up in a larger series of patients will be required to confirm efficacy of this technique, although short-term results look promising.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
496 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献