Effects of the KATP channel opener bimakalim on coronary blood flow, monophasic action potential duration, and infarct size in dogs.

Author:

Yao Z1,Gross G J1

Affiliation:

1. Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226.

Abstract

BACKGROUND The major purpose of the present study was to determine the effect of the potassium channel opener bimakalim, administered intracoronary only during the initial 10 minutes of ischemia, on myocardial infarct size in anesthetized dogs. A second aim was to test the possibility that bimakalim mediates its cardioprotective effects by accelerating the rate of myocyte action potential shortening during early ischemia. A third aim was to determine the relative potency of bimakalim to open coronary vascular ATP-regulated potassium (KATP) channels versus myocyte KATP channels. METHODS AND RESULTS Barbital-anesthetized open-chest dogs were used. In the initial studies, bimakalim (0.1 to 10 micrograms/min) was infused into the left anterior descending coronary artery (LAD), and changes in coronary blood flow and monophasic action potential duration (MAPD) were used as indexes of coronary vascular KATP channel and myocyte KATP channel activity, respectively. In subsequent infarct studies, dogs were subjected to 60 minutes of LAD occlusion followed by 4 hours of reperfusion. Based on preliminary studies, two doses of bimakalim that did not shorten MAPD during nonischemic conditions (0.1 and 0.3 microgram/min) and one that markedly shortened MAPD during nonischemic conditions (3.0 micrograms/min) or an equal volume of vehicle were infused into the LAD during the initial 10 minutes of coronary artery occlusion. Transmural myocardial blood flow was measured at 5 and 30 minutes of occlusion by the radioactive microsphere technique, and infarct size was determined at the end of 4 hours of reperfusion by triphenyltetrazolium staining. The monophasic action potential duration at 50% repolarization (MAPD50) was measured by an epicardial probe placed in the center of the ischemic area. Bimakalim had an approximately 10-fold greater affinity for the coronary vascular than the myocardial KATP channel (ED50 coronary, approximately 0.3 microgram/min; ED50 myocyte, approximately 3.0 micrograms/min). Three doses of bimakalim (0.1, 0.3, and 3.0 micrograms/min) all markedly reduced infarct size expressed as percent of the area at risk (12.6 +/- 3.3%, 14.5 +/- 2.2%, and 14.2 +/- 5.3%, respectively, versus 27.2 +/- 5.7% in controls) to nearly equal extents. Subsequently, we found that the two higher doses of bimakalim (0.3 and 3.0 micrograms/min) markedly accelerated yet the 0.1-microgram/min dose of bimakalim did not significantly affect the ischemia-related shortening of the action potential during the initial 5 minutes of occlusion. In addition, 0.1 and 0.3 microgram/min bimakalim did not increase the incidence of ventricular fibrillation during the 60 minutes of occlusion (0 of 7 and 0 of 8 dogs, respectively), whereas 3.0 micrograms/min bimakalim had a profibrillatory effect (6 of 6) compared with the control group (1 of 8). There were no significant differences between groups in systemic hemodynamics, myocardial oxygen demand, ischemic bed size, or collateral blood flow to the ischemic region. CONCLUSIONS The results of the present study clearly reveal that a small dose (0.1 or 0.3 microgram/min) of the KATP channel opener bimakalim administered only during the initial 10-minute period of ischemia markedly reduced myocardial infarct size to an extent equal to that of a higher profibrillatory dose in barbital-anesthetized dogs. These data also suggest that bimakalim and other potassium channel openers may partially exert their cardioprotective effects by accelerating KATP channel activation during early ischemia as evidenced by an enhanced rate of ischemic myocyte action potential shortening. However, the results also suggest that other cellular mechanisms may be involved in mediating the cardioprotection produced by a low dose of bimakalim (0.1 microgram/min) because it did not significantly accelerate the shortening of the action potential duration, yet it had an efficacy to redu BACKGROUND The major purpose of the present study was to de

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference26 articles.

1. ATP-regulated K+ channels in cardiac muscle

2. The protective effects of cromakalim and pinacidil on reperfusion function and infarct size in isolated perfused rat hearts and anesthetized dogs

3. Cardioprotective effects of the potassium channel opener cromakalim: stereoselectivity and effects on myocardial adenine nucleotides;Grover GJ;J Pharmacol Exp Ther.,1991

4. Auchampach JA Maruyama M Cavero I Gross GJ. The new K' channel opener RP 52891 reduces experimental infarct size in dogs in the absence of systemic hemodynamic changes. JPharmacol Exp Ther. 1991;259:961-967.

Cited by 253 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3