Sympathetic nervous function in human heart as assessed by cardiac spillovers of dihydroxyphenylglycol and norepinephrine.

Author:

Eisenhofer G1,Esler M D1,Meredith I T1,Dart A1,Cannon R O1,Quyyumi A A1,Lambert G1,Chin J1,Jennings G L1,Goldstein D S1

Affiliation:

1. Clinical Neuroscience Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Md. 20892.

Abstract

BACKGROUND Measurement of cardiac norepinephrine spillover may indicate the amount of transmitter at neuroeffector sites but does not distinguish neuronal release or reuptake in determining this amount or provide information about other aspects of sympathetic function. This report examines how cardiac spillover of the norepinephrine metabolite dihydroxyphenylglycol (DHPG) provides additional distinct information about cardiac sympathetic function. METHODS AND RESULTS Arterial and coronary venous blood samples were taken during cardiac catheterization and intravenous infusion of [3H]norepinephrine in 57 subjects. Subjects were given intravenous yohimbine or underwent mental stress, handgrip exercise, and cycling exercise to activate sympathetic nerves or were given intravenous desipramine to block norepinephrine reuptake. Cardiac DHPG spillover (601 +/- 41 pmol/min) was eightfold greater than norepinephrine spillover (78 +/- 10 pmol/min) at rest and increased during sympathetic activation by 65% of the increase of norepinephrine. This and the desipramine-sensitive cardiac production of [3H]-labeled DHPG from [3H]norepinephrine indicated that 10.5 times more endogenous norepinephrine is recaptured than escapes into plasma; that more than 90% of recaptured norepinephrine is sequestered into storage vesicles; and that under resting conditions, most cardiac spillover of DHPG and turnover of norepinephrine are from metabolism of transmitter leaking from vesicles; the latter process is independent of exocytotic transmitter release with a rate at rest over 100-fold that of norepinephrine spillover and over 10-fold that of norepinephrine reuptake. CONCLUSIONS Cardiac spillover of DHPG provides information about processes close to or within sympathetic nerve endings that cannot be provided by measurements of norepinephrine spillover alone. This includes quantitative information about the role of neuronal uptake in terminating the actions of norepinephrine at neuroeffector sites and the importance of vesicular-axoplasmic exchange of norepinephrine as a dynamic process contributing to norepinephrine turnover.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3