Affiliation:
1. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
Abstract
BACKGROUND
Iron may play a central role in oxygen radical generation during myocardial ischemia and after reperfusion. Because conditions during ischemia may also liberate iron, we hypothesized that administration of the iron chelator deferoxamine during ischemia would result in improved functional and metabolic recovery after postischemic reperfusion.
METHODS AND RESULTS
Isolated, perfused rabbit hearts were studied by phosphorus-31 nuclear magnetic resonance spectroscopy. The hearts received one of three treatments: deferoxamine at the onset of 30 minutes of global ischemia (n = 9), deferoxamine as a bolus followed by a continuous 15-minute infusion begun at reflow (n = 9), or standard perfusate (n = 7). Hearts treated with deferoxamine during ischemia showed better recovery of developed pressure than did control hearts (63.2 +/- 7.5% versus 41.2 +/- 2.9% of baseline) (p = 0.02) and better recovery of myocardial phosphocreatine content (92.4 +/- 10.3% versus 68.2 +/- 4.5% of baseline, p less than 0.05). These functional and metabolic benefits were comparable to those obtained with deferoxamine treatment during early reperfusion. In 15 additional hearts, intraischemic treatment with deferoxamine resulted in no reduction in oxygen radical concentrations as measured on frozen tissue by electron paramagnetic resonance spectroscopy at end ischemia, but the treatment eliminated the reperfusion-induced increase of free radical generation observed in control hearts (2.9 +/- 0.01 versus 7.0 +/- 0.07 microM, p less than 0.001). The magnitude of reduction was similar to that when deferoxamine was given at the onset of reflow (2.4 +/- 0.02 microM, p less than 0.001 versus control).
CONCLUSIONS
These results demonstrate improved functional and metabolic recovery of myocardium treated with deferoxamine during ischemia, accompanied by a reduction in reperfusion-induced oxygen free-radical generation to the same degree as reflow treatment, confirming the importance of iron in the pathogenesis of myocardial reperfusion injury.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
123 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献