Affiliation:
1. Francis Scott Key Medical Center, Baltimore, MD 21224.
Abstract
It has been postulated that rotation of the left ventricular apex with respect to the base is a component of normal systolic function in humans, but it has been difficult to measure it noninvasively. Tagging is a new magnetic resonance imaging technique that labels specific areas of myocardium by selective radio-frequency excitation of narrow planes orthogonal to the imaging plane before acquiring an image. Tags appear as black lines and persist in myocardium for 400-500 msec and, if applied at end diastole, will move with the myocardium through systole. Tagging was used to noninvasively quantify left ventricular torsion and circumferential-longitudinal shear (shearCL) in humans. Eight normal volunteers, aged 24-38 years, were imaged in a 0.38-T iron-core resistive magnet. Five short-axis left ventricular images, positioned to encompass the entire left ventricle (LV), were obtained separately at end systole. Four equiangular radial tags had been applied at end diastole, intersecting the myocardium at eight locations. We calculated the difference in angular displacement of each epicardial and endocardial tag point (a tag point being where the tag crossed the epicardium or endocardium) at end systole from the systolic position of the corresponding tag point on the basal plane. This value was called the torsion angle. From this, shearCL, the angle inscribed on the epicardial or endocardial surface between the systolic tag position, the corresponding basal tag position, and its projection onto the slice of interest could be calculated at 32 points in the left ventricular wall.(ABSTRACT TRUNCATED AT 250 WORDS)
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine
Cited by
320 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献