Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging.

Author:

Buchalter M B1,Weiss J L1,Rogers W J1,Zerhouni E A1,Weisfeldt M L1,Beyar R1,Shapiro E P1

Affiliation:

1. Francis Scott Key Medical Center, Baltimore, MD 21224.

Abstract

It has been postulated that rotation of the left ventricular apex with respect to the base is a component of normal systolic function in humans, but it has been difficult to measure it noninvasively. Tagging is a new magnetic resonance imaging technique that labels specific areas of myocardium by selective radio-frequency excitation of narrow planes orthogonal to the imaging plane before acquiring an image. Tags appear as black lines and persist in myocardium for 400-500 msec and, if applied at end diastole, will move with the myocardium through systole. Tagging was used to noninvasively quantify left ventricular torsion and circumferential-longitudinal shear (shearCL) in humans. Eight normal volunteers, aged 24-38 years, were imaged in a 0.38-T iron-core resistive magnet. Five short-axis left ventricular images, positioned to encompass the entire left ventricle (LV), were obtained separately at end systole. Four equiangular radial tags had been applied at end diastole, intersecting the myocardium at eight locations. We calculated the difference in angular displacement of each epicardial and endocardial tag point (a tag point being where the tag crossed the epicardium or endocardium) at end systole from the systolic position of the corresponding tag point on the basal plane. This value was called the torsion angle. From this, shearCL, the angle inscribed on the epicardial or endocardial surface between the systolic tag position, the corresponding basal tag position, and its projection onto the slice of interest could be calculated at 32 points in the left ventricular wall.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 320 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3