Identification of first acute Q wave and non-Q wave myocardial infarction by multivariate analysis of body surface potential maps.

Author:

Kornreich F1,Montague T J1,Rautaharju P M1

Affiliation:

1. Unit for Cardiovascular Research and Engineering, Free University Brussels, Belgium.

Abstract

BACKGROUND Patients with acute non-Q wave myocardial infarction (NQMI) appear to have more jeopardized residual myocardium at high risk for subsequent angina, reinfarction, or malignant arrhythmias than patients with acute Q wave myocardial infarction (QMI). Unfortunately, conventional electrocardiographic (ECG) criteria have limited utility in recognizing NQMI. METHODS AND RESULTS The present study combines the increased information content of body surface potential maps (BSPM) over the 12-lead ECG with the power of multivariate statistical procedures to identify a practical subset of leads that would allow improved diagnosis of NQMI. Discriminant analysis was performed on 120-lead data recorded simultaneously in 159 normal subjects and 308 patients with various types of myocardial infarction (MI) by using instantaneous voltages on time-normalized P, PR, QRS, and ST-T waveforms as well as the duration of these waveforms as features. Leads and features for optimal separation of 159 normals from 183 patients with recent or old QMI (group A) were selected. A total of six features from six torso sites accounted for a specificity of 96% and a sensitivity of 94%. All lead positions were outside the conventional electrode sites and selected features were voltages at mid-P, early and mid-QRS, and before and after the peak of the T wave. The discriminant function was then tested on 57 patients with acute NQMI (group B) and 68 patients with acute QMI (group C): Rates of correct classification were 91% and 93%, respectively. Because of the possible deterioration of the results caused by ST-T abnormalities also present in other clinical entities, a second classification model including an independent group of 116 patients with left ventricular hypertrophy (LVH) but without MI was developed. Two additional measurements were required, namely, P wave duration and a mid-QRS voltage on a lead located 10 cm below V1. Testing the model on both acute MI groups produced correct classification rates of 88% for acute NQMI and 93% for acute QMI. Group mean BSPM were plotted for the three MI groups at successive instants throughout the PQRST waveform. Typical patterns for each MI group were identified during PQRST by removing the corresponding normal variability at each electrode site from sequential MI maps. These standardized maps or discriminant maps provided information on the capability of each measurement at each electrode site and at each instant to separate each class of MI from the normal group (N). Striking similarities were observed between the three MI groups, particularly at mid-QRS and throughout ST-T. The closest resemblance was between acute NQMI and old QMI. Discriminant analysis was also performed on the 12-lead ECG: The first classification model (N versus MI) produced correct classification rates of 85% for acute QMI and 70% for NQMI. With the second model (MI versus N or LVH), correct rates were 81% and 65%, respectively. CONCLUSIONS Diagnosis of acute NQMI and QMI (also in the presence of LVH) can be improved substantially by appropriate selection of ECG leads and features. Comparison of discriminant maps from groups A, B, and C does not support the concept of acute NQMI as a distinct ECG entity but rather as a group with infarcts of smaller size. However, pathophysiological and clinical differences between acute NQMI and acute QMI influence long-term risks and may define different therapeutic approaches.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3