Optimization of biphasic waveforms for human nonthoracotomy defibrillation.

Author:

Swartz J F1,Fletcher R D1,Karasik P E1

Affiliation:

1. Department of Medicine, Uniformed Services University, Bethesda, Md.

Abstract

BACKGROUND Biphasic waveforms reduce defibrillation threshold (DFT) in a wide variety of models. Although there are several human studies of long-duration, high-tilt biphasic waveform defibrillation, the specific biphasic waveform shape required to achieve optimal DFT reduction is unknown. METHODS AND RESULTS This study tested the effect of single capacitor biphasic waveform tilt modification on DFT using a paired study design in 18 patients undergoing nonthoracotomy defibrillator implantation. Baseline DFT was obtained using a 65% tilt, simultaneous pulse, bidirectional monophasic shock from a right ventricular cathode to a coronary sinus or superior vena cava lead and a subscapular patch. The single-capacitor biphasic waveform shocks, delivered over the same pathways, consisted of either both phases at 65% tilt (65/65 biphasic waveform) to produce an overall tilt of 88% and a delivered energy 11% greater than monophasic shock or both phases at 42% tilt (42/42 biphasic waveform) to produce an overall tilt of 66% and delivered energy equal to monophasic shock. The 65/65 biphasic waveform reduced stored energy DFT 25%, from 16.2 +/- 4.4 J with monophasic shock to 12.1 +/- 5.3 J (P < .02); however, it did not significantly reduce the delivered energy DFT. In contrast, the 42/42 biphasic waveform required 49% less stored energy (16.2 +/- 4.4 J, monophasic shock, vs 8.3 +/- 3.3 J, biphasic waveform; P < .001) and 49% less delivered energy (14.2 +/- 3.8 J, monophasic shock, vs 7.3 +/- 2.9 J, biphasic waveform; P < .001) than monophasic shock for successful defibrillation. The 42/42 biphasic waveform delivered energy DFT was 4.6 +/- 5.2 J (39%) less than 65/65 biphasic waveform DFT (P < .002). CONCLUSIONS DFT reduction is an inherent electrophysiological property of biphasic waveforms that is independent of delivered energy. Overall biphasic waveform tilt and the relative amplitudes of the waveform phases are important factors in defibrillation efficacy. Defibrillation with a 42/42 biphasic waveform is more efficacious than 65/65 biphasic waveform defibrillation; however, the optimal biphasic waveform remains unknown.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ventricular Fibrillation and Defibrillation;Reference Module in Biomedical Sciences;2024

2. Balanced Energy/Time Optimal Defibrillation;ASME Letters in Dynamic Systems and Control;2021-09-21

3. Interaction of defibrillation waveform with the time to defibrillation or the number of defibrillation attempts on survival from out-of-hospital cardiac arrest;Resuscitation;2018-01

4. OBSOLETE: Ventricular Fibrillation and Defibrillation;Reference Module in Biomedical Sciences;2018

5. Ventricular Fibrillation and Defibrillation;Encyclopedia of Cardiovascular Research and Medicine;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3